Refine Your Search

Topic

Author

Search Results

Technical Paper

Water Jacket Spacer for Improvement of Cylinder Bore Temperature Distribution

2005-04-11
2005-01-1156
For reduction of fuel consumption, a new device “Water Jacket Spacer” which improves temperature distribution of a cylinder block bore wall was developed. In the case of a conventional cylinder block, coolant flow concentrates at the bottom and middle region of the water jacket. While temperature of the upper bore wall is high (due to high-temperature combustion gas) the temperature of the lower bore wall is low, since its only function is to support the piston. When the developed spacer is inserted into a water jacket, the coolant flow concentrates at the upper part of the jacket. As a result, cooling ability to the upper bore wall was improved and temperature of lower bore wall was increased, thereby reducing fuel consumption.
Technical Paper

Two-Dimensional Temperature Measurements in Diesel Piston Bowl Using Phosphor Thermometry

2009-09-13
2009-24-0033
Phosphor thermometry was used during fuel injection in an optical engine with the glass piston of reentrant type. SiO2 coated phosphor particle was used for the gas-phase temperature measurements, which gave much less background signal. The measurements were performed in motored mode, in combustion mode with injection of n-heptane and in non-combustion mode with injection of iso-octane. In the beginning of injection period, the mean temperature of each injection cases was lower than that of the motored case, and temperature of iso-octane injection cases was even lower than that of n-heptane injection cases. This indicates, even if vaporization effect seemed to be the same at both injection cases, the effect of temperature decrease changed due to the chemical reaction effect for the n-heptane cases. Chemical reaction seems to be initiated outside of the fuel liquid spray and the position was moving towards the fuel rich area as the time proceeds.
Technical Paper

Toyota’s New Driveline for FR Passenger Vehicles

2017-03-28
2017-01-1130
The renewed platform of the upcoming flagship front-engine, rear-wheel drive (FR) vehicles demands high levels of driving performance, fuel efficiency and noise-vibration performance. The newly developed driveline system must balance these conflicting performance attributes by adopting new technologies. This article focuses on several technologies that were needed in order to meet the demand for noise-vibration performance and fuel efficiency. For noise-vibration performance, this article will focus on propeller shaft low frequency noise (booming noise). This noise level is determined by the propeller shaft’s excitation force and the sensitivity of differential mounting system. In regards to the propeller shaft’s excitation force, the contribution of the axial excitation force was clarified. This excitation force was decreased by adopting a double offset joint (DOJ) as the propeller shaft’s second joint and low stiffness rubber couplings as the first and third joints.
Technical Paper

Theoretical Study on Spray Design for Small-Bore Diesel Engine

2016-04-05
2016-01-0740
1 Recently, demand for small-bore compact vehicle engines has been increasing from the standpoint of further reducing CO2 emissions. The generalization and formulation of combustion processes, including those related to emissions formation, based on a certain similarity of physical phenomena regardless of engine size, would be extremely beneficial for the unification of development processes for various sizes of engines. The objective of this study is to clarify what constraints are necessary for engine/nozzle specifications and injection conditions to achieve the same combustion characteristics (such as heat release rate and emissions) in diesel engines with different bore sizes.
Technical Paper

Study of Mileage-Related Formaldehyde Emission from Methanol Fueled Vehicles

1990-02-01
900705
In order to determine the main factors causing the mileage-related increase in formaldehyde emission from methanol-fueled vehicles, mileage was accumulated on three types of vehicle, each of which had a different air-fuel calibration system. From exhaust emission data obtained during and after the mileage accumulation, it was found that lean burn operation resulted in by far the highest formaldehyde emission increase. An investigation into the reason for the rise in engine-out formaldehyde emission revealed that deposits in the combustion chamber emanating from the lubricating oil promotes formaldehyde formation. Furthermore it was learnt that an increase in engine-out NOx emissions promotes partial oxidation of unburned methanol in the catalyst, leading to a significant increase in catalyst-out formaldehyde emission.
Technical Paper

Small Bore Diesel Engine Combustion Concept

2015-04-14
2015-01-0788
Small bore diesel engines often adopt a two-valve cylinder head and a non-central injector layout to expand the port flow passage area. This non-central injector layout causes asymmetrical gas flow and fuel distribution, resulting in worse heat losses and a less homogenous fuel-air mixture than an equivalent four-valve cylinder head layout with a central injector. This paper describes the improvement of piston bowl geometry to achieve a more homogeneous gas flow and fuel-air mixture. This concept reduced fuel consumption by 2.5% compared to the original piston bowl geometry, while also reducing NOx emissions by 10%.
Journal Article

Research on Ultra-High Viscosity Index Engine Oil: Part 2 - Influence of Engine Oil Evaporation Characteristics on Oil Consumption of Internal Combustion Engines

2022-03-29
2022-01-0524
The reduction of CO2 emissions is one of the most important challenges for the automotive industry to contribute to address global warming. Reducing friction of internal combustion engines (ICEs) is one effective countermeasure to realize this objective. The improvement of engine oil can contribute to reduce fuel consumption by reducing friction between engine parts. Electrification of ICE powertrains increases the overall efficiency of powertrains and reduces the average engine oil temperature during vehicle operation, due to intermittent engine operation. An effective way of reducing engine friction is to lower the viscosity of the engine oil in the low to medium temperature range. This can be accomplished while maintaining viscosity at high temperatures by reducing the base oil viscosity and increasing the viscosity modifier (VM) content to raise the viscosity index (so-called “flat viscosity” concept).
Journal Article

Research on Ultra-High Viscosity Index Engine Oil: Part 1 - “Flat Viscosity” Concept and Contribution to Carbon Neutrality

2022-03-29
2022-01-0525
In recent years, the realization of carbon neutrality has become an activity to be tackled worldwide, and automobile manufacturers are promoting electrification of power train by HEV, PHEV, BEV and FCEV. Although interest in BEV is currently growing, vehicles equipped with internal combustion engines (ICE) including HEV and PHEV will continue to be used in areas where conversion to BEV is not easy due to lack of sufficient infrastructures. For such vehicles, low-viscosity engine oil will be one of the most important means to contribute to further reduction of CO2 emissions. Since HEV requires less work from the engine, the engine oil temperature is lower than that of conventional engine vehicles. Therefore, the reduction of viscous resistance in the mid-to-low temperature range below 80°C is expected to contribute more to fuel economy. On the other hand, the viscosity must be kept above a certain level to ensure the performance of hydraulic devices in the high oil temperature range.
Technical Paper

Research of Knocking Deterioration due to Accumulated Carbon Deposits on Piston Surfaces

2019-04-02
2019-01-1141
The quantity of heavy components in fuel is increasing as automotive fuels diversify, and engine oil formulations are becoming more complex. These trends result in the formation of larger amounts of carbon deposits as reaction byproducts during combustion, potentially worsening the susceptibility of the engine to knock [1]. The research described in this paper aimed to identify the mechanism that causes knocking to deteriorate due to carbon deposits in low to medium engine load ranges, which are mainly used when the vehicle drives off and accelerates. With this objective, the cylinder temperature and pressure with and without deposits were measured, and it was found that knocking deteriorates in a certain range of ignition timing.
Journal Article

Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of “Temperature Swing” Insulation to Direct-Injection Diesel Engines

2016-04-05
2016-01-0661
The reduction of the heat loss from the in-cylinder gas to the combustion chamber wall is one of the key technologies for improving the thermal efficiency of internal combustion engines. This paper describes an experimental verification of the “temperature swing” insulation concept, whereby the surface temperature of the combustion chamber wall follows that of the transient gas. First, we focus on the development of “temperature swing” insulation materials and structures with the thermo-physical properties of low thermal conductivity and low volumetric heat capacity. Heat flux measurements for the developed insulation coating show that a new insulation material formed from silica-reinforced porous anodized aluminum (SiRPA) offers both heat-rejecting properties and reliability in an internal combustion engine. Furthermore, a laser-induced phosphorescence technique was used to verify the temporal changes in the surface temperature of the developed insulation coating.
Technical Paper

Reduction of Friction Losses in Crankcase at High Engine Speeds

2006-10-16
2006-01-3350
Recently, engines achieving high power levels are becoming increasingly common. The trend is toward increasing the inflow of lubricating oil into the crankcase through several factors (for example, increasing the flow rate of the cooling oil jets in order to reduce the thermal load of the pistons). In addition, the mechanical losses induced by the motion of the crankshaft and connecting rods through the additional oil are intensified due to the higher engine speeds at maximum power. In this article, we confirmed a method of separating the pumping loss and the agitation loss by measuring the pressure in the crankcase and an empirical formula was found for predicting pumping loss from displacement and ventilating area. We also investigated the effect of reducing the lubrication oil flow rate, as well as other factors affecting the oil flow, on the mechanical loss at high engine speeds.
Technical Paper

Reducing the Amount of Lubricating Engine Oil by Using a New Crankshaft Bearing with Eccentric Oil Groove

2004-10-25
2004-01-3048
Oil pump down sizing is one of the effective method to improve engine friction loss. Reducing the required amount of lubricating engine oil can be achieved by the application of a new crankshaft bearing with an eccentric oil groove. By adopting a bearing with an eccentric groove, we found the well balanced specification which can keep the necessary amount of oil to the crankshaft pin and reduce leaking oil from crankshaft main journal. Measuring oil amount distribution in engine running condition simultaneously and checking capability of eliminating contamination analytically have achieved.
Technical Paper

New Conceptual Lead Free Overlays Consisted of Solid Lubricant for Internal Combustion Engine Bearings

2003-03-03
2003-01-0244
Two types of new conceptual lead free overlays are developed for automotive internal combustion(IC) engine bearings. The overlays are consisted of molybdenum disulfide(MoS2) and polyamideimide(PAI) resin for binding. One of the overlays is suitable for diesel engines with higher unit load and the other overlay is suitable for gasoline engines with higher sliding velocity. Both overlays indicate good corrosion resistance and wear resistance comparing with conventional lead base overlay. Moreover, higher fatigue resistance is obtained in combination with high performance lead free bearing alloy. These new bearings have the potential to become alternative materials to conventional copper lead bearings with lead base overlay.
Technical Paper

Method for Prediction of Engine Oil Aeration Rate

2008-04-14
2008-01-1361
Due to the advancement of engine performance, large volumes of oil circulate within a narrow internal space of passenger car engines. This phenomenon often leads to oil foaming and aeration problems. In this study, we developed a method for predicting the rate of engine oil aeration from specific engine parameters and running conditions. Engine tests show that the rate of oil aeration is stable throughout the process between bubble release from the oil surface and aeration. Additionally, bubble size affects its release rate from the oil surface. Utilizing both of these assumptions, our prediction method calculates aeration rate by evaluating bubble number and size.
Journal Article

Low-viscosity Gear Oil Technology to Improve Wear at Tapered Roller Bearings in Differential Gear Unit

2016-10-17
2016-01-2204
Torque loss reduction at differential gear unit is important to improve the fuel economy of automobiles. One effective way is to decrease the viscosity of lubricants as it results in less churning loss. However, this option creates a higher potential for thin oil films, which could damage the mechanical parts. At tapered roller bearings, in particular, wear at the large end face of rollers and its counterpart, known as bearing bottom wear is one of major failure modes. To understand the wear mechanism, wear at the rolling contact surface of rollers and its counterpart, known as bearing side wear, was also observed to confirm the wear impact on the tapered roller bearings. Because gear oils are also required to avoid seizure under extreme pressure, the combination of a phosphorus anti-wear agent and a sulfurous extreme pressure agent are formulated.
Technical Paper

Low Cooling Losses and Low Emission Analysis of Small Bore Diesel Engine Combustion

2015-09-01
2015-01-1824
Small bore diesel engines often adopt a two-valve cylinder head and a non-central injector layout to expand the port flow passage area. This non-central injector layout causes asymmetrical gas flow and fuel distribution, resulting in worse heat losseses and a less homogenous fuel-air mixture than an equivalent four-valve cylinder head layout with a central injector. To improve these problems Toyota applied a new concept which was characterized by tapered shape design on the upper portion of the piston and low compression ratio to achieve more homogeneous gas flow and fuel-air mixture. This paper describes the impact of new combustion concept and the mechanism of the improvement by 3D-CFD analysis and optical measurement.
Journal Article

Investigation of Engine Oil Effect on Abnormal Combustion in Turbocharged Direct Injection - Spark Ignition Engines

2012-09-10
2012-01-1615
Abnormal combustion referred to as Low Speed Pre-Ignition (LSPI) may restrict low speed torque improvements in turbocharged Direct Injection (DI) - Spark Ignition (SI) Engines. Recent investigations have reported that the auto-ignition of an engine oil droplet from the piston crevice in the combustion chamber may cause unexpected and random LSPI. This study shows that engine oil formulations have significant effects on LSPI. We found that the spontaneous ignition temperature of engine oil, as determined using High-Pressure Differential Scanning Calorimetry (HP-DSC) correlates with LSPI frequency in a prototype turbocharged DI-SI engine. Based on these findings, we believe that the oxidation reaction of the oil is very important factor to the LSPI. Our test data, using a prototype engine, shows both preventative and contributory effects of base oil and metal-based engine oil additives.
Technical Paper

Influence of New Engine Oil Additives on the Properties of Fluoroelastomers

1998-10-19
982437
Fluoroelastmers are well known for their resistance to heat and fluids, and have become major material for crankcase oil seals. On the other hand, new additive formulations are developed for engine lubricants used for fuel economic gasoline engines. In this paper, the effects of those additives on properties of fluoroelastmers are investigated. The results of the immersion tests of both test plaques and oil seal products indicate that dithiocarbamates, friction modifier, have hardening effects on fluoroelastmers. The fluoroelastmer deterioration mechanism is determined by analysis of elastmer samples after immersion in oil.
Journal Article

Influence of Bio Diesel Fuel on Engine Oil Performance

2010-05-05
2010-01-1543
To evaluate the influence of FAME, which has poor oxidation stability, on engine oil performance, an engine test was conducted under large volumes of fuel dilution by post-injection. The test showed that detergent consumption and polymerization of FAME were accelerated in engine oil, causing a severe deterioration in piston cleanliness and sludge protection performance of engine oil.
Technical Paper

Flow and Temperature Distribution in an Experimental Engine: LES Studies and Thermographic Imaging

2010-10-25
2010-01-2237
Temperature stratification plays an important role in HCCI combustion. The onsets of auto-ignition and combustion duration are sensitive to the temperature field in the engine cylinder. Numerical simulations of HCCI engine combustion are affected by the use of wall boundary conditions, especially the temperature condition at the cylinder and piston walls. This paper reports on numerical studies and experiments of the temperature field in an optical experimental engine in motored run conditions aiming at improved understanding of the evolution of temperature stratification in the cylinder. The simulations were based on Large-Eddy-Simulation approach which resolves the unsteady energetic large eddy and large scale swirl and tumble structures. Two dimensional temperature experiments were carried out using laser induced phosphorescence with thermographic phosphors seeded to the gas in the cylinder.
X