Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Warm-Up Characteristics of Thin Wall Honeycomb Catalysts

1991-02-01
910611
HC emission standards will be tightened during the 1990's in the US. A key issue in reducing HC emission is improving the warm-up characteristics of catalysts during the cold start of engines. For this purpose, studies are under way on reduction of heat mass of ceramic substrates. Reduction of cell walls in substrates to thickness smaller than the current thickness of 12mil or 6mil has resulted in reduced heat mass, and also reduced flow restriction of substrates. The warm-up characteristics of low bulk density catalysts are better than those of high bulk density, i.e., the warm-up characteristics of thinner wall or lower cell density catalysts are better than those of thicker wall or higher cell density catalysts. A relationship between geometric surface area and warm-up characteristics is observed.
Technical Paper

Visualization Analysis of Diesel Combustion with Water and Diesel Fuel Emulsified Blend in a Constant Volume Chamber Vessel

2014-11-11
2014-32-0127
Diesel-like combustion of an emulsified blend of water and diesel fuel in a constant volume chamber vessel was visualized with high speed color video, further analyzing with a 2-D two color method and shadowgraph images. When the temperature at the fuel injection is 900 K, here while the combustion with unblended diesel fuel in the vessel is similar to ordinary diesel combustion with diffusive combustion, combustion with the emulsified fuel is similar to premixed diesel combustion with a large premixed combustion and very little diffusive combustion. With the emulsified fuel the flame luminosity and temperature are lower, the luminous flame and high temperature regions are smaller, and the duration of the luminous flame is shorter than with diesel fuel. This is due to promotion of premixing with increases in the ignition delay and decreases in the combustion temperature with the water vaporization.
Technical Paper

Venturi Vacuum Transducer Enables Heavy EGR Control

1980-06-01
800824
In order to significantly reduce NOx levels by EGR (Exhaust Gas Recirculation), while maintaining good fuel economy and driveability, the EGR flow rate must be properly and accurately controlled under a variety of engine operating conditions. Toward this objective, a new EGR control system was developed. It utilizes a carburetor venturi vacuum for a stable reference signal that represents the engine operating condition and it controls the EGR flow rate by using a feedback principle to obtain sufficient flexibility compatible with several different engines. Its control characteristics were mathematically analyzed. And it has also been confirmed that the system can automatically compensate for the drift in EGR characteristics. This EGR control system has been utilized in Nissan’s emission control systems in order to comply with the 1978 Japanese Emission Standards and the 1980 U.S. Federal and California Emission Standards.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Unsteady Three-Dimensional Computations of the Penetration Length and Mixing Process of Various Single High-Speed Gas Jets for Engines

2017-03-28
2017-01-0817
For various densities of gas jets including very light hydrogen and relatively heavy ones, the penetration length and diffusion process of a single high-speed gas fuel jet injected into air are computed by performing a large eddy simulation (LES) with fewer arbitrary constants applied for the unsteady three-dimensional compressible Navier-Stokes equation. In contrast, traditional ensemble models such as the Reynolds-averaged Navier-Stokes (RANS) equation have several arbitrary constants for fitting purposes. The cubic-interpolated pseudo-particle (CIP) method is employed for discretizing the nonlinear terms. Computations of single-component nitrogen and hydrogen jets were done under initial conditions of a fuel tank pressure of gas fuel = 10 MPa and back pressure of air = 3.5 MPa, i.e., the pressure level inside the combustion chamber after piston compression in the engine.
Journal Article

Unregulated Harmful Substances in Exhaust Gas from Diesel Engines

2009-06-15
2009-01-1870
The volatile organic compounds (VOC) from diesel engines, including formaldehyde and benzene, are concerned and remain as unregulated harmful substances. The substances are positively correlated with THC emissions, but the VOC and aldehyde compounds at light load or idling conditions are more significant than THC. When coolant temperatures are low at light loads, there are notable increases in formaldehyde and acetaldehyde, and with lower coolant temperatures the increase in aldehydes is more significant than the increase in THC. When using ultra high EGR so that the intake oxygen content decreases below 10%, formaldehyde, acetaldehyde, benzene, and 1,3-butadiene increase significantly while smokeless and ultra low Nox combustion is possible.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Ultra-Clean Combustion Technology Combining a Low-Temperature and Premixed Combustion Concept for Meeting Future Emission Standards

2001-03-05
2001-01-0200
Experimental investigations were conducted with a direct-injection diesel engine to improve exhaust emission, especially nitrogen oxide (NOx) and particulate matter (PM), without increasing fuel consumption. As a result of this work, a new combustion concept, called Modulated Kinetics (MK) combustion, has been developed that reduces NOx and smoke simultaneously through low-temperature combustion and premixed combustion, respectively. The characteristics of a new combustion concept were investigated using a single cylinder DI diesel engine and combustion photographs. The low compression ratio, EGR cooling and high injection pressure was applied with a multi-cylinder test engine to accomplish premixed combustion at high load region. Combustion chamber specifications have been optimized to avoid the increase of cold-start HC emissions due to a low compression ratio.
Technical Paper

Two Small Prototype Engines Developed based on Pulsed Supermulti-Jets Colliding: Having a Potential of Thermal Efficiency Over 60% with Satisfactory Strength of Structure

2014-11-11
2014-32-0099
In our previous reports based on computations and fluid dynamic theory, we proposed a new compressive combustion principle for an inexpensive and relatively quiet engine reactor that has the potential to achieve thermal efficiency over 50% even for small combustion chambers having less than 100 cc. This can be achieved with colliding supermulti-jets that create complete air insulation to encase burned gas around the chamber center. We originally developed two small prototype engine systems for gasoline. First one with one rotary valve for pulsating intake flow and sixteen nozzles of jets colliding has no pistons. Next, we developed the second one having a strongly-asymmetric double piston system with the supermulti-jets colliding, although there are no poppet valves. The second prototype engine can vary point-compression strength due to the supermulti-jets and homogeneous compression level due to piston, by changing phase and size of two gears.
Technical Paper

Two Prototype Engines with Colliding and Compression of Pulsed Supermulti-Jets through a Focusing Process, Leading to Nearly Complete Air Insulation and Relatively Silent High Compression for Automobiles, Motorcycles, Aircrafts, and Rockets

2020-04-14
2020-01-0837
We have proposed the engine featuring a new compressive combustion principle based on pulsed supermulti-jets colliding through a focusing process in which the jets are injected from the chamber walls to the chamber center. This principle has the potential for achieving relatively silent high compression around the chamber center because autoignition occurs far from the chamber walls and also for stabilizing ignition due to this plug-less approach without heat loss on mechanical plugs including compulsory plasma ignition systems. Then, burned high temperature gas is encased by nearly complete air insulation, because the compressive flow shrinking in focusing process gets over expansion flow generated by combustion.
Technical Paper

Turbulence and Cycle-by-Cycle Variation of Mean Velocity Generated by Swirl and Tumble Flow and Their Effects on Combustion

1995-02-01
950813
Combinations of swirl flow and tumble flow generated by 13 types of swirl control valve were tested by using both impulse steady flow rig and LDV. Comparison between the steady flow characteristics and the result of LDV measurement under motoring condition shows that tumble flow generates turbulence in combustion chamber more effectively than swirl flow does, and that swirling motion reduces the cycle by cycle variation of mean velocity in combustion chamber which tends to be generated by tumbling motion. Performance tests are also carried out under the condition of homogeneous charge. Tumble flow promotes the combustion speed more strongly than expected from its turbulence intensity measured by LDV. It is also shown that lean limit air fuel ratio does not have a strong relation with cycle variation of mean velocity but with turbulence intensity.
Technical Paper

Total Gas/Effective Fuel Ratio Predicts Coast Surge in Emission-Control Vehicles

1980-06-01
800827
In the course of developing a low-emission manual transmission vehicle, coast surge in the fore-and-aft direction resulting from the installation of certain emission-control devices was sometimes experienced immediately after the initiation of vehicle deceleration. Our investigation revealed that this vehicle surge was caused by combustion irregularities in a sequence of combustion-misfire-intense combustion events occurring every several cycles. A new combustibility standard. Gt/Feff, defined as the ratio of total cylinder mixture weight Gt to effective fuel weight Feff, was found to predict combustibility and irregular combustion over the entire mixture range. As a result, driveability during deceleration was improved by modifying key emission-control components.
Technical Paper

Three-Way Catalytic Reaction in an Electric Field for Exhaust Emission Control Application

2021-04-06
2021-01-0573
To prevent global warming, further reductions in carbon dioxide are required. It is therefore important to promote the spread of electric vehicles powered by internal combustion engines and electric vehicles without internal combustion engines. As a result, emissions from hybrid electric vehicles equipped with internal combustion engines should be further reduced. Interest in catalytic reactions in an electric field with a higher catalytic activity compared to conventional catalysts has increased because this technology consumes less energy than other electrical heating devices. This study was therefore undertaken to apply a catalytic reaction in an electric field to an exhaust emission control. First, the original experimental equipment was built with a high voltage system used to conduct catalytic activity tests.
Technical Paper

Three-Dimensional Computation of the Effects of the Swirl Ratio in Direct-Injection Diesel Engines on NOx and Soot Emissions

1996-05-01
961125
Three-dimensional computation has been applied to analyze combustion and emission characteristics in direct-injection diesel engines. A computational code called TurboKIVA was used to investigate the effects of the swirl ratio, one of the fundamental factors related to combustion control, on combustion characteristics and NOx and soot emissions. The code was first modified to calculate soot formation and oxidation and the precise behavior of fuel drops on the combustion chamber wall. As a result of improving calculation accuracy, good agreement was obtained between the measured and predicted pressure, heat release rate and NOx and soot emissions. Using this modified version of TurboKIVA, the effects of the swirl ratio on NOx and soot emissions were investigated. The computational results showed that soot emissions were reduced with a higher swirl ratio. However, a further increase in the swirl ratio produced greater soot emissions.
Technical Paper

Thermal efficiency improvement in twin shaped semi- premixed diesel combustion with a combustion chamber dividing fuel sprays and optimization of fuel ignitability

2023-09-29
2023-32-0051
The authors have reported significant smoke reduction in twin shaped semi-premixed diesel combustion with a newly designed combustion chamber to distribute the first and the second sprays into upper and lower layers. However, the first stage premixed combustion tends to advance far from the TDC, resulting in lowering of thermal efficiencies. In this report, improvement of thermal efficiency by optimizing the combustion phase with lower ignitability fuels was identified with the divided combustion chamber. The experiment was conducted with four fuels with different cetane numbers. The first stage premixed combustion can be retarded to the optimum phase with the fuel with cetane number 38, establishing high efficiencies.
Technical Paper

Thermal Fatigue Life of Exhaust Manifolds Predicted by Simulation

2002-03-04
2002-01-0854
A combined computational fluid dynamics (CFD) and finite element (FE) analysis approach has been developed to simulate in the early stages of design the temperature distribution and estimate the thermal fatigue life of an engine exhaust manifold. To simulate the temperature distribution under actual operating conditions, we considered the external and internal flow fields. Digital mock-ups of the vehicle and engine were used to define the geometry of the engine compartment. External-air-flow simulation using in-house CFD code was used to predict the flow fields in the engine compartment and the heat transfer coefficients between the air and the exhaust manifold wall at various vehicle speeds. Unsteady-gas-flow calculation using the STAR-CD thermal- fluids analysis code was to predict the heat transfer coefficients between the exhaust gas and the manifold wall under various operating conditions.
Technical Paper

Thermal Efficiency Improvements with Split Primary Fuel Injections in Semi-Premixed Diesel Combustion with Multi-Peak Shaped Heat Release

2019-12-19
2019-01-2170
To improve the combustion characteristics in semi-premixed diesel combustion, consisting in the first-stage premixed combustion of the primary fuel injection and the second-stage spray combustion of the secondary injection, the effect of splitting the primary injection was investigated in a diesel engine and analyzed with a CFD. The indicated thermal efficiency improves due to reductions in heat transfer losses to the in-cylinder wall and the combustion noise is suppressed with the split primary injections. The CFD analysis showed that the reduction in heat transfer loss with the split primary injections is due to a decrease in the combustion quantity near the combustion chamber wall.
Technical Paper

Thermal Efficiency Improvement and its Mechanism at Low Load Conditions in Semi-Premixed Diesel Combustion with Twin Peak Shaped Heat Release

2019-04-02
2019-01-1153
Semi-premixed diesel combustion with a twin peak shaped heat release with the two-stage fuel injection (twin combustion) has the potential to establish efficient, low emission, and low noise operation. However, with twin combustion at low loads the indicated thermal efficiencies are poorer than at medium loads due to the lower combustion efficiencies. In this report, to increase the combustion efficiencies at low loads, the thermal efficiency related parameters were investigated in a 0.55 L single cylinder diesel engine. The results show that the indicated thermal efficiency improves with increases in the intake gas temperatures at low loads. However, at the higher loads where the combustion efficiencies are somewhat higher the indicated thermal efficiencies decrease with increases in the intake gas temperatures due to increases in the cooling losses.
Technical Paper

The New Nissan 1.7 Liter 4 Cylinder Diesel Engine

1983-06-06
831008
The new Nissan 1.7 liter 4 cylinder diesel engine has been developed to meet the social requirements for energy conservation. The main objective was to improve fuel economy without sacrificing driveability, and this has been achieved by minimizing engine weight, reducing mechanical friction loss and optimizing the combustion system. The CA series gasoline engine, which is known for its light weight, was chosen as the base engine for dieselization. The swirl chamber combustion system used for the LD28 engine was modified to satisfy the requirements for high power, good fuel economy and low noise. Engine noise has been reduced with the aid of several analytical methods such as laser holography. Special attention has been paid to the reduction of diesel knock which is most offensive to the ear. To install this engine in a small FWD vehicle transversely, much effort went into the minimizing of the engine length and width.
Technical Paper

The Effect of Intake, Injection Parameters and Fuel Properties on Diesel Combustion and Emissions

2003-05-19
2003-01-1793
To improve urban air pollution, stringent emissions regulations for heavy-duty diesel engines have been proposed and will become effective in Japan, the EU, and the United States in a few years. To comply with such future regulations, it is critical to investigate the effects of intake and injection parameters and fuel properties on engine performance, efficiency and emissions characteristics, associated with the use of aftertreatment systems. An experimental study was carried out to identify such effects. In addition, the KIVA-3 code was used to gain insight into cylinder events. The results showed improvements in NOx-Smoke and BSFC trade-offs at high-pressure injection in conjunction with EGR and supercharging.
X