Refine Your Search

Topic

Author

Search Results

Journal Article

Thermal Efficiency Enhancement of a Gasoline Engine

2015-04-14
2015-01-1263
The goal of this research was to improve thermal efficiency under conditions of stoichiometric air-fuel ratio and 91 RON (Research Octane Number) gasoline fuel. Increasing compression ratio and dilution are effective means to increase the thermal efficiency of gasoline engines. Increased compression ratio is associated with issues such as slow combustion, increased cooling loss, and engine knocking. Against these challenges, a higher stroke-bore ratio (S/B ratio) and a lower effective compression ratio were tried as countermeasures. With respect to increased dilution, combustion of a high-EGR (Exhaust Gas Recirculation) was tried. High-energy ignition and optimized combustion chamber shape with high tumble port were tried as countermeasures against slow combustion and reduced ignitability due to a higher EGR rate.
Technical Paper

The Effectiveness of the Use of the Side View Camera in Reducing Accidents when Changing Lanes

2013-04-08
2013-01-1027
This paper explains the effectiveness of camera images in reducing accidents when changing lanes. A Side View Camera shows images rearward and to the side that include the blind spots of side-view mirrors on an onboard display. The effectiveness of a rear-view camera for parking at low speed is well-known, but little has been verified on the effectiveness of the camera for changing lanes at high speed on a freeway. We used a driving simulator to verify the effectiveness of camera images to assist the driver to confirm safety. The simulator reproduces various dangerous scenes a driver may encounter when changing lanes in a freeway environment. The accident rate when drivers change lanes using common methods, such as the driver looking over his or her shoulder and checking the side-view mirror, were compared with the addition of images from the Side View Camera that offered the same view as the side-view mirror plus the blind spot displayed on an in-vehicle monitor.
Technical Paper

Some Factors in the Subjective Evaluation of Laboratory Simulated Ride

2001-04-30
2001-01-1569
Effects of DOF and subjective method on evaluations of ride quality on the Ford Vehicle Vibration Simulator were studied. Seat track vibrations from 6 vehicles were reproduced on the 6 DOF seat shaker in a DOE with pitch and roll as factors. These appeared in two evaluations of ride/shake; semantic scaling by 30 subjects of 6 vehicles, and paired comparisons by 16 of the subjects on 3 of the vehicles. Both methods found significant vehicle, pitch and roll effects. Order dependence was shown for semantic scaling. The less susceptible paired comparison method gave a different ordering, and is thus preferred.
Journal Article

Research on Validation Metrics for Multiple Dynamic Response Comparison under Uncertainty

2015-04-14
2015-01-0443
Computer programs and models are playing an increasing role in simulating vehicle crashworthiness, dynamic, and fuel efficiency. To maximize the effectiveness of these models, the validity and predictive capabilities of these models need to be assessed quantitatively. For a successful implementation of Computer Aided Engineering (CAE) models as an integrated part of the current vehicle development process, it is necessary to develop objective validation metric that has the desirable metric properties to quantify the discrepancy between multiple tests and simulation results. However, most of the outputs of dynamic systems are multiple functional responses, such as time history series. This calls for the development of an objective metric that can evaluate the differences of the multiple time histories as well as the key features under uncertainty.
Technical Paper

Research on Extended Expansion General-Purpose Engine-Efficiency Enhancement by Natural Gas Operation-

2010-09-28
2010-32-0007
Research on extended expansion engine was carried out in order to enhance thermal efficiency in general purpose engines. A four-jointed linkage was used between the connecting rod and the crank pin of a standard piston-crank system and provides an Atkinson thermo dynamic cycle. Thermal efficiency of an engine with a compression ratio of 12.4 and an expansion ratio of 18.1 was compared to an engine with a compression ratio of 9.4 and an expansion ratio of 13.6. Measured indicated thermal efficiency of prototyped engine operated by natural gas was 38.7%, a 2.6% increase, as predicted in the numerical simulation.
Technical Paper

Recent Developments in Penetration Resistance of Windshield Glass

1965-02-01
650474
A twofold improvement in penetration resistance of laminated safety glass for use in vehicle windshields has been achieved. A new test procedure has been established which will provide better correlation of test conditions to accident conditions than present tests do. Present windshield material and the new safety glazings are compared.
Technical Paper

Predicted Paths of Soot Particles in the Cylinders of a Direct Injection Diesel Engine

2012-04-16
2012-01-0148
Soot formation and distribution inside the cylinder of a light-duty direct injection diesel engine, have been predicted using Kiva-3v CFD software. Pathlines of soot particles traced from specific in-cylinder locations and crank angle instants have been explored using the results for cylinder charge motion predicted by the Kiva-3v code. Pathlines are determined assuming soot particles are massless and follow charge motion. Coagulation and agglomeration have not been taken into account. High rates of soot formation dominate during and just after the injection. Oxidation becomes dominant after the injection has terminated and throughout the power stroke. Computed soot pathlines show that soot particles formed just below the fuel spray axis during the early injection period are more likely to travel to the cylinder wall boundary layer. Soot particles above the fuel spray have lesser tendency to be conveyed to the cylinder wall.
Technical Paper

Performance and Economic Objectives for Over-the-Road Powerplants of the Future

1965-02-01
650482
The purpose of this paper is to project the performance and economic objectives of over-the-road powerplants in the decade of the 1970’s. The influencing factors for this projection are trends in: intercity ton miles of freight, size and weight legislation, the interstate highway system maximum legal speed laws, and operating costs of interstate carriers. These factors set the stage and establish the horizon for over-the-road vehicles of tomorrow.
Technical Paper

Modeling of Long Fiber Reinforced Plastics

2015-04-14
2015-01-0698
Long fiber reinforced plastics (LFRP) have exhibited superior mechanical performance and outstanding design flexibility, bringing them with increasing popularity in the automotive structural design. Due to the injection molding process, the distribution of long fibers varies at different locations throughout the part, resulting in anisotropic and non-uniform mechanical properties of the final LFRP parts. Images from X-ray CT scan of the materials show that local volume fraction of the long fibers tends to be higher at core than at skin layer. Also fibers are bundled and tangled to form clusters. Most of the current micromechanical material models used for LFRP are extended from those for short fibers without adequate validation. The effect of the complexity of long fibers on the material properties is not appropriately considered. Thus, modeling of these materials is lagging behind the material manufacturing and design development, which in turn limits their further development.
Technical Paper

Metal Stamping Presses Noise Investigation and Abatement

1980-02-01
800495
Noise generating mechanisms connected with steel-blanking operation has been identified and their engineering treatments developed and tested. Use of rubber-metal laminates proved to be successful for cushioning impacts in kinematic pairs and joints. Use of plastic for the stripper plate construction was recommended. The “die stiffener” concept was developed to reduce main noise peak associated with punch breakthrough. Screening of the die cavity by a transparent curtain of overlapping PVC strips was shown to be effective. A pulse load simulator with adjustable load rate and amplitude has been developed to facilitate testing of presses.
Technical Paper

Large-Eddy Simulation Study on Unsteady Effects in a Statistically Stationary SI Engine Port Flow

2015-04-14
2015-01-0373
Although spark-ignited engines have a considerable development history, the relevant flow physics and geometry design implications are still not fully understood. One reason is the lack of experimental and numerical methods with sufficiently high resolution or capabilities of capturing stochastic phenomena which could be used as part of the development cycle. More recently, Large-Eddy simulation (LES) has been identified as a promising technique to establish a better understanding of in-cylinder flow variations. However, simulations of engine configurations are challenging due to resolution as well as modeling requirements and computational cost for these unsteady multi-physics problems. LES on full engine geometries can even be prohibitively expensive. For this reason, the size of the computational LES domain is here reduced to the region of physical interest and boundary conditions are obtained from a RANS simulation of the whole experimental flow domain.
Technical Paper

Evaluation of Air Bag Electronic Sensing System Collision Performance through Laboratory Simulation

2015-04-14
2015-01-1484
Since their inception, the design of airbag sensing systems has continued to evolve. The evolution of air bag sensing system design has been rapid. Electromechanical sensors used in earlier front air bag applications have been replaced by multi-point electronic sensors used to discriminate collision mechanics for potential air bag deployment in front, side and rollover accidents. In addition to multipoint electronic sensors, advanced air bag systems incorporate a variety of state sensors such as seat belt use status, seat track location, and occupant size classification that are taken into consideration by air bag system algorithms and occupant protection deployment strategies. Electronic sensing systems have allowed for the advent of event data recorders (EDRs), which over the past decade, have provided increasingly more information related to air bag deployment events in the field.
Journal Article

Establishment of Prediction Technology of Fatigue Strength in Roots of Internal Thread for Crankcase Assembly and Clarification of Cracking Mechanism in Roots of Internal Thread

2010-09-28
2010-32-0029
In motorcycle engines with aluminum crankcases, fatigue fractures at the roots of the internal threads of the fastening bolts used for the cylinder head and crankshaft main bearing often occurs during the durability tests at the prototype stage. A technology that evaluates the fatigue strength of the entire crankcase including the roots of internal threads using a large-scale and nonlinear finite element method (FEM) analysis is established by this research. Parallel process computation by a cluster server enables the evaluation of the fatigue strength of the crankcase in a short time suitable for the development process even when using a model that faithfully reproduces the shape, the contact property, and the elasto-plastic material characteristic of the threads. This technology enables the efficient design of crankcases that are light and durable.
Technical Paper

Establishing Localized Fire Test Methods and Progressing Safety Standards for FCVs and Hydrogen Vehicles

2011-04-12
2011-01-0251
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 11 years. In the past couple of years, significant attention has been directed toward a revision to the standard for vehicular hydrogen systems, SAE J2579(1). In addition to streamlining test methodologies for verification of Compressed Hydrogen Storage Systems (CHSSs) as discussed last year,(2) the working group has been considering the effect of vehicle fires, with the major focus on a small or localized fire that could damage the container in the CHSS and allow a burst before the Pressure Relief Device (PRD) can activate and safely vent the compressed hydrogen stored from the container.
Technical Paper

EGR and Swirl Distribution Analysis Using Coupled 1D-3D CFD Simulation for a Turbocharged Heavy Duty Diesel Engine

2011-09-13
2011-01-2222
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbo Diesel and code named "Scorpion" was designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. A high pressure Exhaust Gas Recirculation (EGR) layout in combination with a Variable Geometry Turbine (VGT) is used to deliver cooled EGR for in-cylinder NOx reduction. The cylinder-to-cylinder variation of EGR and swirl ratio is tightly controlled by the careful design of the EGR mixer and intake system flow path to reduce variability of cylinder-out PM and NOx emissions. 3D-CFD studies were used to quickly screen several EGR mixer designs based on mixing efficiency and pressure drop considerations. To optimize the intake system, 1D-3D co-simulation methodology with AVL-FIRE and AVL-BOOST has been used to assess the cylinder-to-cylinder EGR distribution and dynamic swirl.
Book

Developments in Lightweight Aluminum Alloys for Automotive Applications: 2001-2005

2006-02-03
The use of lightweight materials in automotive application has greatly increased in the past two decades. A need to meet customer demands for vehicle safety, performance and fuel efficiency has accelerated the development, evaluation and employment of new lightweight materials and processes. The 50 SAE Technical papers contained in this publication document the processes, guidelines, and physical and mechanical properties that can be applied to the selection and design of lightweight components for automotive applications. The book starts off with an introduction section containing two 1920 papers that examine the use of aluminum in automobiles.
Journal Article

Development of a Standard Spin Loss Test Procedure for FWD-Based Power Transfer Units

2013-04-08
2013-01-0361
As vehicle fuel economy continues to grow in importance, the ability to accurately measure the level of efficiency on all driveline components is required. A standardized test procedure enables manufacturers and suppliers to measure component losses consistently and provides data to make comparisons. In addition, the procedure offers a reliable process to assess enablers for efficiency improvements. Previous published studies have outlined the development of a comprehensive test procedure to measure transfer case speed-dependent parasitic losses at key speed, load, and environmental conditions. This paper will take the same basic approach for the Power Transfer Units (PTUs) used on Front Wheel Drive (FWD) based All Wheel Drive (AWD) vehicles. Factors included in the assessment include single and multi-stage PTUs, fluid levels, break-in process, and temperature effects.
Journal Article

Development of a Comprehensive Validation Method for Dynamic Systems and Its Application on Vehicle Design

2015-04-14
2015-01-0452
Simulation based design optimization has become the common practice in automotive product development. Increasing computer models are developed to simulate various dynamic systems. Before applying these models for product development, model validation needs to be conducted to assess their validity. In model validation, for the purpose of obtaining results successfully, it is vital to select or develop appropriate metrics for specific applications. For dynamic systems, one of the key obstacles of model validation is that most of the responses are functional, such as time history curves. This calls for the development of a metric that can evaluate the differences in terms of phase shift, magnitude and shape, which requires information from both time and frequency domain. And by representing time histories in frequency domain, more intuitive information can be obtained, such as magnitude-frequency and phase-frequency characteristics.
Technical Paper

Development of Variable Cylinder Management System for Large Motorcycles- An Effective Way of Reducing Output Change at Switching of the Number of Working Cylinders

2010-09-28
2010-32-0117
The world's first Variable Cylinder Management (VCM) system for large motorcycles, which will achieve both high power and low fuel consumption, has been developed. The system uses a mass production in-line four-cylinder engine which has a displacement of 1137 cm₃ as the base engine. The VCM system is capable of increasing and decreasing the number of working cylinders between 2-cylinder, 3-cylinder and 4-cylinder operations by modifying some parts of the base engine. Utilizing throttle valves installed on each cylinder, the throttle valves for continuously operating the regularly working cylinders and the on-demand working cylinders are controlled by three motors, which divide them into three independent lines. In order to improve fuel consumption by reducing the pumping loss of the non-working cylinders, the engine is equipped with hydraulically operated intake and exhaust valve deactivating mechanisms.
Technical Paper

Development of Prediction Method for Dynamic Strain on Windshield during Passenger Airbag Deployment

2015-04-14
2015-01-1330
The objective of this study is to accurately predict the dynamic strain on the windshield caused by the deployment of the airbag in a short term without vehicle tests. The following assumption is made as to the dynamic pressure distribution on the windshield: The deployment of the airbag is fast enough to ignore spatial difference in the patterns of the pressure time histories. Given this assumption, significant parameters of the dynamic pressure distribution are as follows: 1) the distribution of the maximum pressure during contact between the airbag and the windshield, and 2) the characteristic of the force time histories applied to the windshield by the deploying airbag. In this study, the prediction method consists of a simplified airbag deployment test and an FE simulation. The simple deployment test was conducted to measure the peak pressure distribution between the airbag and a flat panel simulating the windshield.
X