Refine Your Search

Topic

Author

Search Results

Technical Paper

Validation of Turbulent Combustion and Knocking Simulation in Spark-Ignition Engines Using Reduced Chemical Kinetics

2015-04-14
2015-01-0750
Downsizing or higher compression ratio of SI engines is an appropriate way to achieve considerable improvements of part load fuel efficiency. As the compression ratio directly impacts the engine cycle thermal efficiency, it is important to increase the compression ratio in order to reduce the specific fuel consumption. However, when operating a highly boosted / downsized SI engine at full load, the actual combustion process deviates strongly from the ideal Otto cycle due to the increased effective loads requiring ignition timing delay to suppress abnormal combustion phenomena such as engine knocking. This means that for an optimal design of an SI engine between balances must be found between part load and full load operation. If the knocking characteristic can be accurately predicted beforehand when designing the combustion chamber, a reduction of design time and /or an increase in development efficiency would be possible.
Technical Paper

The Properties of Hybrid Fiber Reinforced Metal and It's Application for Engine Block

1989-02-01
890557
The weight-saving requirements for automobiles are important. In order to produce a lighter engine, an aluminum block with cast-iron liners and a hypereutectic aluminum-silicon alloy block have been developed. (1)*, (2), (3), (4), (5), (6) We developed a new aluminum engine block which has the cylinder bore surface structure reinforced with short ceramic fiber. We also established technology suitable for mass-production including a fiber preform process and a non-destructive inspection method. In this paper, the optimum properties and production technology of MMC engine blocks are introduced. A portion of the paper is dedicated to the results of a comparison study between a new light-weight aluminum engine block, a hypereutectic aluminum-silicon engine block and an aluminum engine block with cast-iron liners.
Technical Paper

Study on Combustion Monitoring System for Formula One Engines Using Ionic Current Measurement

2004-06-08
2004-01-1921
Formula One engines, which are the pursuit of the ultimate in performance, tend to be comparatively vulnerable to durability issues. These engines sometimes run under a state of unstable combustion as compensation for improved fuel economy. To cope with these issues, there have been strong demands in the racing field for a technology that will allow constant monitoring and prompt action to be carried out on system malfunctions and failures, as well as unstable combustion. The research program described in this paper deals with an onboard technology for monitoring combustion under all the operational conditions using ionic current measurement. The technology will possibly be applied to engine management and car-to-pit communications via telemetering. The scope of the control it offers includes; detection of misfire and hesitation, detection and management of detonation, and management of lean-burn combustion.
Journal Article

Study of Reproducibility of Pedal Tracking and Detection Response Task to Assess Driver Distraction

2015-04-14
2015-01-1388
We have developed a bench test method to assess driver distraction caused by the load of using infotainment systems. In a previous study, we found that this method can be used to assess the task loads of both visual-manual tasks and auditory-vocal tasks. The task loads are assessed using the performances of both pedal tracking task (PT) and detection response task (DRT) while performing secondary tasks. We can perform this method using simple equipment such as game pedals and a PC. The aim of this study is to verify the reproducibility of the PT-DRT. Experiments were conducted in three test environments in which test regions, experimenters and participants differed from each other in the US, and the test procedures were almost the same. We set two types of visual-manual tasks and two types of auditory-vocal tasks as secondary tasks and set two difficulties for each task type to vary the level of task load.
Technical Paper

Study of Knocking Damage Indexing Based on Optical Measurement

2015-04-14
2015-01-0762
Attempts were made to measure knocking phenomenon by an optical method, which is free from influences of mechanical noises and is allowing an easy installation to an engine. Using a newly developed high durability optical probe, the light intensity of hydroxyl radical component, which is diffracted from the emitted light from combustion, was measured. The intensity of this emission component was measured at each crank angle and the maximum intensity in a cycle was identified. After that, the angular range in which the measured intensity exceeded 85% of this maximum intensity was defined as “CA85”. When a knocking was purposely induced by changing the conditions of the engine operation, there appeared the engine cycles that included CA85 less than a crank angle of 4 degrees. The frequency of occurrence of CA85 equal to or less than 4 degrees within a predetermined number of engine cycles, which can be interpreted as a knocking occurrence ratio, was denoted as “CA85-4”.
Technical Paper

Study of High Power Dynamic Charging System

2017-03-28
2017-01-1245
The use of electric vehicles (EV) is becoming more widespread as a response to global warming. The major issues associated with EV are the annoyance represented by charging the vehicles and their limited cruising range. In an attempt to remove the restrictions on the cruising range of EV, the research discussed in this paper developed a dynamic charging EV and low-cost infrastructure that would make it possible for the vehicles to charge by receiving power directly from infrastructure while in motion. Based on considerations of the effect of electromagnetic waves, charging power, and the amount of power able to be supplied by the system, this development focused on a contact-type charging system. The use of a wireless charging system would produce concerns over danger due to the infiltration of foreign matter into the primary and secondary coils and the health effects of leakage flux.
Technical Paper

Study of Ethanol-Gasoline Onboard Separation System for Knocking Suppression

2015-09-01
2015-01-1954
Bio-ethanol is used worldwide in fuel mixtures such as E10 gasoline. In this study, an onboard fuel system employing a pervaporation membrane was investigated to separate E10 into high-octane-number fuel (high-concentration ethanol fuel) and low-octane-number fuel (low-concentration ethanol fuel). The optimal operation conditions and size of the membrane unit for the separation system were determined in consideration of the separation rate and vehicle installation. This system can supply separated ethanol with sufficient speed and quantity to improve engine performance under practical driving conditions. In addition, the study was conducted to confirm that separated fuels have properties sufficient for use in automobiles. This separation rate enabled 5-cycle-mode driving without temporary shortage of permeated fuel.
Journal Article

Strength Analysis of a Cylinder Head Gasket Using Computer Simulation

2009-04-20
2009-01-0197
The properties sought in a multi-layer steel cylinder head gasket include cylinder pressure sealing and fatigue strength in order for there to be no damage while the engine is in operation. Diesel engines, in particular, have high cylinder pressure and a high axial tension by the cylinder head bolt demanding severe environment to the gaskets. As engine performance is enhanced, there are cases when cracks develop in the gasket plate, necessitating countermeasures. The cause of cracking in a flat center plate, in particular, has not yet been explained, and no method for evaluation had previously existed. Three-dimensional non-linear finite element calculation was therefore performed to verify the cause. First, a static pressurization rig test was used and the amount of strain was measured to confirm the validity of the calculations. Then the same method of calculation was used to verify the distribution of strain, with a focus on the plate position.
Technical Paper

Prediction of Piston Skirt Scuffing via 3D Piston Motion Simulation

2016-04-05
2016-01-1044
This paper describes the establishment of a new method for predicting piston skirt scuffing in the internal combustion engine of a passenger car. The authors previously constructed and reported a method that uses 3D piston motion simulation to predict piston slap noise and piston skirt friction. However, that simulation did not have a clear index for evaluation of scuffing that involves piston skirt erosion, and it impressed shortage of the predictive accuracy of a scuffing. Therefore, the authors derived a new evaluation index for piston skirt scuffing by actually operating an internal combustion engine using multiple types of pistons to reproduce the conditions under which scuffing occurs, and comparing with the results of calculating the same conditions by piston motion simulation.
Technical Paper

Prediction Method of Surface Pressure against Gasket in Consideration of Creep on Cylinder Head in Air-Cooled Engines

2012-10-23
2012-32-0104
A method was designed to predict the gasket surface pressure in consideration of creep which occurs on the surface of the gasket side of the cylinder head in air-cooled engines. Creep caused by heat can cause major deformation on the gasket side of the cylinder head in air-cooled engines, which may result in combustion gas leaking from between the cylinder and cylinder head. Until now, there have been no reports of methods to accurately predict phenomena relating to this deformation in the initial stage of engine design. This study combined values of strain and temperature occurring on the gasket side of the cylinder head, obtained through FEM analysis of steady heat transfer and thermal stress, with unit test results showing the domains in which the influence of the creep is critical or not. This information was used to design a method to determine whether or not an engine's specifications fell into a domain in which creep would have an effect, and predict surface pressure.
Technical Paper

Pre-Ignition Phenomena of Methanol Fuel (M85) by the Post-Ignition Technique

1989-09-01
892061
Pre-ignition phenomena of methanol fuel (M85) and unleaded premium gasoline were studied with use of the post-ignition technique. The combustion pressure as well as a signal from the pre-ignition detector were analyzed. It was found that methanol fuel is more susceptible to pre-ignition compared to gasoline fuel. Large cycle-by-cycle variations are present with combustion by surface ignition at the time of pre-ignition. This was caused by wide variations in the 0% mass fraction burned point. Since ionization signals from the pre-ignition detector prior to spark ignition indicate the 0% mass fraction burned point by surface ignition, prediction of pre-ignition is possible with use of the post-ignition technique. Platinum tipped spark plugs were found to be highly susceptible to pre-ignition with methanol fuel.
Technical Paper

Performance of Motorcycle Engine Oil with Sulfur-Based Additive as Substitute Zn-DTP

2008-09-09
2008-32-0005
Just as CO2 reduction is required of four wheeled vehicles for environmental protection, similar environmental concerns drive the development of motorcycle oil technology. Zinc dialkyldithiophosphate (Zn-DTP) type additives are widely used for engine oil formulations. However, phosphorus compounds are environmental load materials. The reduction of the quantity of phosphorus compounds in engine oils is required to reduce poisoning of three-way catalysts used to purify exhaust gases from internal combustion engines. Mr. Ito and his co-authors1) reported that they developed a sulfur-based additive as a substitute for Zn-DTP. Their non-phosphorus engine oil formulation for four-wheeled vehicles with a sulfur-based additive was examined to evaluate its anti-wear performance using the following test methods:JASO M328 for gasoline engines (KA24E) and JASO M354 for Diesel engine (4D34T4).
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

Onboard Ethanol-Gasoline Separation System for Octane-on-Demand Vehicle

2020-04-14
2020-01-0350
Bioethanol is being used as an alternative fuel throughout the world based on considerations of reduction of CO2 emissions and sustainability. It is widely known that ethanol has an advantage of high anti-knock quality. In order to use the ethanol in ethanol-blended gasoline to control knocking, the research discussed in this paper sought to develop a fuel separation system that would separate ethanol-blended gasoline into a high-octane-number fuel (high-ethanol-concentration fuel) and a low-octane-number fuel (low-ethanol-concentration fuel) in the vehicle. The research developed a small fuel separation system, and employed a layout in which the system was fitted in the fuel tank based on considerations of reducing the effect on cabin space and maintaining safety in the event of a collision. The total volume of the components fitted in the fuel tank is 6.6 liters.
Technical Paper

Next Generation Formed-In-Place Gasket (FIPG) Liquid Sealant for Automotive Intake Manifold Application

2009-04-20
2009-01-0996
Intake manifold is a part of an engine that supplies fuel/air mixture to the cylinder heads. Recently, silicone FIPG has been used for the two part design of the intake manifold. It is known that a small, but significant, amount of gasoline fuel can penetrate through silicone FIPG layer due to the flexible nature of the siloxane backbone. Since gasoline permeation is becoming more important because of more severe regulations, it is found that a new polyacrylate based FIPG dramatically reduces the gasoline fuel permeation. This study compares this new technology, polyacrylate FIPG sealant with silicone FIPG sealant used today for vehicle powertrain gasketing applications. Adhesion investigation on both aluminum and magnesium alloys, and oil resistance are also discussed in this study.
Journal Article

New Three-dimensional Piston Secondary Motion Analysis Method Coupling Structure Analysis and Multi Body Dynamics Analysis

2011-11-08
2011-32-0559
A new piston secondary motion analysis has been developed that accurately predicts piston strength and the slap noise that occurs when the engine is running. For this secondary motion analysis, flexible bodies are used for the models of the piston, cylinder and cylinder head. This makes it possible to quantify the deformations and secondary motion occurring in each area of the engine. The method is a coupled analysis of the structure analysis and the multi body dynamics analysis. The accuracy of the results obtained in the new analysis method was verified by comparing them to measurement data of piston skirt stress and piston secondary motion taken during firing. To measure piston skirt stress, a newly developed battery-powered telemetric measurement system was used. The calculation results were close to the measurement results both for stress and for secondary motion from low to high engine speed.
Journal Article

New Theoretical Approach for Weight Reduction on Cylinder Head

2015-04-14
2015-01-0495
Designing a lightweight and durable engine is universally important from the standpoints of fuel economy, vehicle dynamics and cost. However, it is challenging to theoretically find an optimal solution which meets both requirements in products such as the cylinder head, to which various thermal loads and mechanical loads are simultaneously applied. In our research, we focused on “non-parametric optimization” and attempted to establish a new design approach derived from the weight reduction of a cylinder head. Our optimization process consists of topology optimization and shape optimization. In the topology optimization process, we explored an optimal structure with the theoretically-highest stiffness in the given design space. This is to provide an efficient structure for pursuing both lightweight and durable characteristics in the subsequent shape optimization process.
Journal Article

Method Using Multiple Regression Analysis to Separate Engine Radiation Noise into the Contributions of Combustion Noise and Mechanical Noise in the Time Domain

2014-04-01
2014-01-1678
A technique was created to separate the contributions of combustion noise and mechanical noise to engine noise in the time domain in order to achieve efficient measures for enhancing the sound quality of combustion noise. There is an existing technique based on 1/3 octave band analysis that is known as a method for separating the contributions to engine radiation noise, but this technique cannot provide time-domain data. Therefore, the author has proposed a technique that separates engine radiation noise into combustion noise and mechanical noise in the time domain by finding the combustion noise for each cylinder and calculating its structural response function by considering its real and imaginary components. Results of analysis of actual engine radiation noise with this technique confirmed that combustion noise, which is characterized by strong pulsation, and irregular mechanical noise can be separated in the time domain with good precision.
Journal Article

Manufacturing Technology for Hollow Structure Large Aluminum Parts Production by High Pressure Die Casting (HPDC)

2015-04-14
2015-01-1319
When using aluminum for vehicle body parts to reduce weight, the high pressure die casting (HPDC) is widely applied due to its adaptability to thin-wall products, near-net-shape castability, and short casting cycle time. Since a hollow construction is advantageous to increase stiffness of body parts, there has been a need of development of techniques for casting of hollow parts by HPDC. So far, hollow casting by HPDC has been realized for small parts using sand cores. When applying that method to large parts, however, it is necessary to increase filling speed. When the filling speed is increased, the core tends to break. In this project, we have developed a method to estimate changes of pressure distribution when filling molten metal by the casting simulation in order to analyze damages to the core. Through the analysis, we discovered occurrence of impulsive pressure waves.
Technical Paper

Management System for Continuously Variable Valve Lift Gasoline Engine

2007-04-16
2007-01-1200
A continuously variable valve lift gasoline engine can improve fuel consumption by reducing pumping loss and increase maximum torque by optimizing valve lift and cam phase according to engine speed. In this research, a new control system to simultaneously ensure good driveability and low emissions was developed for this low fuel consumption, high power engine. New suction air management through a master-slave control made it possible to achieve low fuel consumption and good driveability. To regulate the idle speed, a new controller featuring a two-degree-of-freedom sliding-mode algorithm with cooperative control was designed. This controller can improve the stability of idle speed and achieve the idle operation with a lower engine speed. To reduce emissions during cold start condition, an ignition timing control was developed that combine I-P control with a sliding mode control algorithm.
X