Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Study on Combustion Monitoring System for Formula One Engines Using Ionic Current Measurement

2004-06-08
2004-01-1921
Formula One engines, which are the pursuit of the ultimate in performance, tend to be comparatively vulnerable to durability issues. These engines sometimes run under a state of unstable combustion as compensation for improved fuel economy. To cope with these issues, there have been strong demands in the racing field for a technology that will allow constant monitoring and prompt action to be carried out on system malfunctions and failures, as well as unstable combustion. The research program described in this paper deals with an onboard technology for monitoring combustion under all the operational conditions using ionic current measurement. The technology will possibly be applied to engine management and car-to-pit communications via telemetering. The scope of the control it offers includes; detection of misfire and hesitation, detection and management of detonation, and management of lean-burn combustion.
Technical Paper

Development of Extruded Electrically Heated Catalyst System for ULEV Standards

1997-02-24
971031
Into the early-part of the next century, automotive emission standards are becoming stricter around the world. The electrically-heated catalyst (EHC) is well known as an effective technology for the reduction of cold-start hydrocarbon emissions without a significant increase in back pressure. Our extruded, alternator powered EHC (APEHC) manufactured with a unique canning method and equipped with a reliable, water proof electrode has demonstrated excellent durability and reliability, as stated in our previous SAE paper (#960340). The APEHC system discussed in this paper has achieved the Ultra-Low-Emission Vehicle (ULEV) standards, after 100,000 miles of fleet testing, without any failure. This is the final milestone in addressing the EHC as a realistic-production technology for ULEV. With the ability to meet ULEV/Stage III emission targets without a significant increase in back pressure, the EHC will be applied to an especially high performance vehicle with a large displacement engine.
X