Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The European Union Mg-Engine Project - Generation of Material Property Data for Four Die Cast Mg-Alloys

2006-04-03
2006-01-0070
A specific objective of the European Mg-Engine project is to qualify at least two die cast Mg alloys with improved high temperature properties, in addition to satisfactory corrosion resistance, castability and costs. This paper discusses the selection criteria for high temperature alloys leading to four candidate alloys, AJ52A, AJ62A, AE44 and AE35. Tensile-, creep- and fatigue testing of standard die cast test specimens at different temperatures and conditions have led to a very large amount of material property data. Numerous examples are given to underline the potential for these alloys in high temperature automotive applications. The subsequent use of the basic property data in material models for design of automotive components is illustrated.
Technical Paper

Numerical Modeling of the Structural Behavior of Thin-Walled Cast Magnesium Components Using a Through-Process Approach

2005-04-11
2005-01-0724
A through-process methodology for numerical simulations of the structural behavior of thin-walled cast magnesium components is presented. The methodology consists of casting process simulations using MAGMAsoft, mapping of data from the process simulation onto a FE-mesh (shell elements) and numerical simulations using the explicit FE-code LS-DYNA. In this work, generic High Pressure Die Cast (HPDC) AM60 components have been studied using 3-point bending and 4-point bending tests. The experimental data are applied to obtain a validated methodology for finite element modeling of thin-walled cast components subjected to quasi-static loading. The cast magnesium alloy is modeled using a user-defined material model consisting of an elastic-plastic model based on a non-associated J2-flow theory and the Cockcroft-Latham fracture criterion. The fracture criterion is coupled with an element erosion algorithm available in LS-DYNA.
Technical Paper

Light Weight Engine Construction through Extended and Sustainable Use of Mg-Alloys

2006-04-03
2006-01-0068
Eight partners from Europe and one from North America have joined efforts in a EU-supported project to find new ways for sustainable production of Mg-based engine blocks for cars. The ultimate aim of the work is to reduce vehicle weight, thereby reducing fuel consumption and CO2 emissions from operation of the vehicle. Four new magnesium alloys are considered in the project and an engine block has been series cast - 20 each in two alloys. An extensive mechanical testing program has been initiated to identify in particular the high temperature limits of the four alloys and a significant experimental study of proper bolt materials for joining is being done in parallel. Engine redesign and life cycle analysis has also been completed to secure the future sustainable exploitation of the project results. This paper presents an overview of the work and results obtained until now - 3 months before the ending date of the project.
Technical Paper

Galvanic Compatibility of Coated Steel Fasteners with Magnesium

1995-02-01
950429
Selected metallic platings and insulating coatings on steel fasteners were evaluated for ability to reduce galvanic corrosion of die cast magnesium in a modified salt spray test. Proprietary electroplate systems based on zinc, zinc-nickel, zinc-cobalt and tin-zinc were tested, along with a commercial 50-50 tin lead alloy electroplate without supplementary coating. A proprietary liquid-applied zinc-rich inorganic coating successfully used on automotive fasteners was also tested for compatibility with magnesium. Encapsulation of bolt heads with plastic insulating coatings or special molded caps was evaluated. Interruption of the continuous salt spray by rinse and bake cycles was investigated as a likely exposure condition for magnesium assemblies in powertrain or underhood applications. Several of the protection schemes were found to effectively eliminate galvanic corrosion of the magnesium.
X