Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

The Numerical Study for the Adaptive Restraint System

2007-04-16
2007-01-1500
This paper is intended to find out the optimized restraint system for various crash conditions and to analyze the characteristics of those conditions numerically. 40km/h FF (Full Frontal crash), 56km/h FF and 64km/h ODB (Offset Deformable Barrier crash) conditions have been considered with 5th%ile female, 50th%ile male and 95th%ile male dummies on driver side. The vehicle lay out and crash pulses came from a compact passenger car. The restraint system was focused on the driver side airbag and seat belt. MADYMO 3D was used in this study for simulation.
Technical Paper

Simplified Models for Optimization of Curtain Air Bag for US NCAP

2011-04-12
2011-01-0013
The main role of CAB(side curtain airbag) is to protect the occupant's head in the event of side crash. The updated US NCAP for model year 2010 requires more extended coverage of CAB. It is not only required to cover the 50th%ile driver but also the 5th%ile driver and rear passenger. Although the general safety analysis model using only concerned sub-structure of the vehicle and prescribed structural motion is sufficient to handle frequent jobs, the analysis model with increased efficiency is needed when optimization is to be studied as it requires more runs and the model gets enlarged to consider extended sub-structure. In this study, three types of simplified analysis models are introduced. The first has an impactor which is composed of the head and neck with prescribed translational motions. It only uses the upper parts of the original sub-structure hence the run time is saved by 60∼70%.
Technical Paper

Passenger Injury Analysis Considering Vehicle Crash after AEB Activation

2020-03-31
2019-22-0023
Owing to an increasing autonomous emergency braking (AEB) adoption, emergency braking before crash occurs more often than in the case of conventional vehicles. Due to the sudden deceleration in AEB activation, passengers move forward before the crash. To explore how this forward movement affects passenger injury, sled tests are performed with an inclined dummy representing forward displacement. The test shows that a shorter distance between the airbag and passenger results in bigger neck injuries induced by airbag deployment force. A countermeasure is suggested to prevent neck injury in emergency braking situation by reducing deployment force and protrusion.
Technical Paper

Optimal Design of EPB Caliper Using DOE

2017-09-17
2017-01-2519
An Electrical Parking Brake (EPB) system is a device that operates to park the vehicle automatically with the push of a button instead of using conventional hand or foot levers which in some ways makes it the first by wire type of brake system. As such, it is being considered in some vehicle architectures as an automatic redundant backup for vacuum-less brake systems or autonomous cars. The EPB system is generally divided into cable puller and motor on caliper (MOC) types. Recently, the MOC type EPB is being more widely applied in the global market due to product competitiveness and cost effectiveness. The MOC type EPB is composed of the caliper body, torque member, pad assembly, nut assembly and actuator. Among them, the caliper body and torque member play a main role in the robustness of the EPB system and occupy more than 80% of the total weight.
Technical Paper

Offset Compensation Algorithms for the Yaw Rate and Lateral Acceleration Sensors

2007-08-05
2007-01-3561
The paper presents a new offset compensation method of a yaw rate sensor and a lateral acceleration sensor. It is necessary to compensate the offsets of the analog sensors, such as the yaw rate sensor and the lateral acceleration sensor, to acquire accurate signals. This paper proposes two different offset compensation algorithms, the sequential compensation method and the model based compensation method. Both algorithms are combined with the algorithm map depending on the vehicle driving status. The proposed algorithm is verified by the computer simulations.
Technical Paper

Numerical Analysis for Evaluating the Cumulative Impact Damage of Automotive Bumpers

2007-04-16
2007-01-0687
We performed numerical analyses using an explicit code to evaluate the cumulative impact damage of an automotive front-end bumper during low-speed crash events, as described by CMVSS215. The CMVSS215 regulation consists of a series of test cases for the same parts. To evaluate the crash performance of a bumper, we used a coupled numerical analysis scheme and considered several matters such as the removal of residual vibrations and the evaluation of the bumper back beam recovery. We also used an EWK rupture model in the PAM-CRASH code to improve our damage and fracture estimates. Tensile test experiments were conducted to tune the performance of the EWK rupture model; the resulting material properties and fracture criterion were incorporated into the numerical analyses of the low-speed frontal crash events. The coupled analysis scheme was verified by comparing the output with bumper impact test data.
Technical Paper

Improvement of Steering Performance Using Steering Rack Force Control

2019-04-02
2019-01-1234
Drivers continually require steering performance improvement, particularly in the area of feedback from the road. In this study, we develop a new electrically-assisted steering logic by 1) analyzing existing steering systems to determine key factors, 2) modeling an ideal steering system from which to obtain a desirable driver torque, 3) developing a rack force observer to faithfully represent road information and 4) building a feedback compensator to track the tuned torque. In general, the estimator uses the driver torque, assist torque and other steering system signals. However, the friction of the steering system is difficult to estimate accurately. At high speed, where steering feeling is very important, greater friction results in increased error. In order to solve this problem, we design two estimators generated from a vehicle model and a steering system model. The observer that uses two estimators can reflect various operating conditions by using the strengths of each method.
Journal Article

Estimation of Lateral Force due to Lateral Disturbance for Application to an MDPS-Based Driving Assistant System

2011-04-12
2011-01-0977
This paper describes a lateral disturbance estimator for an application to a Motor Driven Power Steering (MDPS)-based driving assistant system. A vehicle motion can be disturbed laterally by wind force or load from bank angle acting on the vehicle in the lateral direction. An MDPS-based driving assistant system can be used to reduce steering effort of a human driver in a driving situation with lateral disturbance. In designing the MDPS-based driving assistant system, the lateral wind disturbance should be estimated to determine an assistant torque. An estimator for the vehicle lateral disturbance estimation has been developed. The proposed estimator consists of two parts: a tire self-aligning torque estimator and the lateral disturbance estimator. The lateral disturbance estimator has been designed on the basis of a 2-DOF bicycle model with available sensor signals from the MDPS module. A numerical simulation has been conducted in order to evaluate the proposed estimator.
Technical Paper

Efficient Method for Head-Up Display Image Compensation by Using Pre-Warping

2019-04-02
2019-01-1008
A Head-Up Display (HUD) is electrical device that provides virtual images in front of driver. Virtual images are consists of various driving information. Because HUD uses optical system there exist image distortions with respect to image height and driver’s eye position. Image warping is image correction method that makes a geometrical change on image to minimize image distortions. In this paper to minimize image distortions, we use optical data driven warping matrix for each image height. But even though we applied data driven warping matrix, image distortions occur due to assemble and manufacturing tolerances when HUD is built. In this paper, we also suggest pre-warping method to minimize image distortions considering tolerances. We simulated 3 compensation functions to get rid of image distortions from the tolerances. By using proposed pre-warping method we could reduce maximum x, y distance by 31.5%, 39% and average distance by 32.2%, 27.9% of distortions.
Technical Paper

Disc Brake Squeal vs. Disc Pad Compressibility-Caliper Stiffness Interactions: Low-Frequency Squeal and High-Frequency Squeal vs. Differential Pad Wear

2017-09-17
2017-01-2528
It is widely believed or speculated that higher pad compressibility leads to reduced brake squeal and that caliper design can affect brake squeal. After encountering anecdotal contradictory cases, this investigation was undertaken to systematically generate basic data and clarify the beliefs or speculations. In order to adjust pad compressibility, it is common to modify pad molding temperatures, pressures and times, which in addition to changing the compressibility, changes friction coefficient and physical properties of the pad at the same time. In order to separate these two effects, NAO disc pads were prepared under the same molding conditions while using different thicknesses of the underlayer to achieve different compressibilities, thus changing the compressibility only without changing the friction coefficient and physical properties of the pad.
Technical Paper

Development of the Defrost Performance Evaluation Technology in Automotive Using Design Optimization Analysis Method

2020-04-14
2020-01-0155
In this study, we developed the defrost performance evaluation technology using the multi-objective optimization method based on the CFD. The defrosting is one of the key factors to ensure the drivers’ safety using the forced flow having proper temperature from HVAC during drive. There are many factors affecting the defrost performance, but the configurations of guide-vane and discharge angles in the center DEF(defrosting) duct section which are main design factors of the defrost performance in automotive, so these were set to the design parameters for this study. For the shape-optimization study, the discharge mass flow rate from the HVAC which is transferred to the windshield and the discharge areas in the center defrost duct were set to the response parameters. And then, the standard deviation value of mass flow rate on the selected discharge areas checking the uniformity of discharge flow was set to the objective function to find the optimal design.
Technical Paper

Development of New Weight-Based Occupant Classification System Utilizing DFSS Methodology

2009-04-20
2009-01-1247
As occupant injuries induced by airbag deployment became a critical issue, revisions to FMVSS 208 were made to mandate the adoption of advanced airbag which can protect occupants of varying statures. As a result, OCS (Occupant Classification System) has become an important part of advanced airbag technologies. In this paper, we review existing OCS technologies briefly and list details of development issues and solutions for weight-based OCS. As an effort to reduce cost and optimize performance for the semi-LRD (Low Risk Deployment) airbag system, a study on reducing the number of sensors from 4 to 2 for the current system utilizing DFSS methodology is provided and discussed.
Technical Paper

Development of Durability Analysis Automation System(DAAS)

2007-04-16
2007-01-0949
Many automotive companies have recently introduced Virtual Product Development (VPD) techniques. The VPD helps engineers to reduce the number of design changes, speed up development time and improve product quality by utilizing CAE early in the design cycle before prototypes are ever created. In the VPD environment, however, simulation engineers inevitably perform a large number of analyses due to a number of design changes and validations of performance and reliability. In effect, the engineers have to follow many steps of analysis processes when using various kinds of simulation applications, which may require repetitious manual works such that it is easy to make mistakes. In an effort to solve these problems, automation software incorporating various types of analysis processes for automotive suspension components, DAAS (Durability Analysis Automation System) has been developed.
Technical Paper

Correlation and Validation of Analytical Models for Vibration Fatigue Prediction of ABS Assembly Brackets

2010-04-12
2010-01-0503
ABS assembly is supported by the mounting bracket which is installed at the body inside engine room. Such feature of the mounting bracket requires consideration of durability performance under the dynamic random loads imposed by engine excitation. So, modal parameters, such as natural frequencies and mode shapes, of ABS assembly and its bracket should be considered when evaluating the fatigue life. Therefore, fatigue analyses and experiments of ABS assembly and its bracket were performed in the frequency domain rather than the time domain. After that, analysis results were compared and correlated with experimental results, and the analysis method was updated to improve analysis accuracy.
Technical Paper

Analysis of the Mechanism by Which Spline Pitch Errors Affect Powertrain Vibration

2024-06-12
2024-01-2910
As environmental concerns have taken the spotlight, electrified powertrains are rapidly being integrated into vehicles across various brands, boosting their market share. With the increasing adoption of electric vehicles, market demands are growing, and competition is intensifying. This trend has led to stricter standards for noise and vibration as well. To meet these requirements, it is necessary to not only address the inherent noise and vibration sources in electric powertrains, primarily from motors and gearboxes, but also to analyze the impact of the spline power transmission structure on system vibration and noise. Especially crucial is the consideration of manufacturing discrepancies, such as pitch errors in splines, which various studies have highlighted as contributors to noise and vibration in electric powertrains. This paper focuses on comparing and analyzing the influence of spline pitch errors on two layout configurations of motor and gearbox spline coupling structures.
Technical Paper

Alternative Approach to Design ESC and MDPS Integrated Control System

2010-04-12
2010-01-0101
The integrated control system of Electronic Stability Control (ESC) and Motor-Driven Power Steering (MDPS) improves vehicle performance and extends functions via CAN network without any hardware modification. Although the ESC and MDPS integrated system does not improve vehicle behavior directly, it can inspire drivers to steer to the right direction by changing steering torque assistance characteristics. There are two different ways to control both ESC and MDPS systems: Top-down and Parallel control mode. First, the Top-down control mode, which is already widely used on the market, imposes ESC on the additional functions of ESC+MDPS integrated system. On the contrary, the Parallel control mode distributes the functions to ESC and MDPS, therefore each system does their own role and cooperates on special events. In this study, the parallel control mode controller is proposed and compared with the Top-down control mode.
Technical Paper

A Study on the Low-Weigt BMC for Headlamp Reflector

2011-10-06
2011-28-0010
Optimal Composition of Light-weight BMC (Bulk molding compound) for automotive headlamp reflector using Glass bubble was investigated. Glass bubble (G/B) normally has low heat conductivity which has a bad influence on cycle time making products like reflectors. It was very important to improve the productivity of Light-weight BMC by means of finding optimal composition of base resin, curing agent and other additives. This study focused on the ideal ratio of each component of BMC, unsaturated polyester resin, glass bubble, inorganic filler, glass fiber and additives. Mechanical and environmental properties of the product which was made of optimized light-weight BMC were evaluated to compare with the properties of the product which was made of existing BMC.
Journal Article

A Study on Fracture Characteristics of Plastics and Application to Head Impact Simulation for Instrument Panels

2008-04-14
2008-01-1116
The instrument panels are made to meet stiffness requirements and also interior safety regulation such as head impact test. Nowadays, CAE is widely used to predict the test results in advance. However, considering fracture phenomena, the characteristics of material takes a significant role for the simulation of the real tests. In this paper, high speed tensile tests and fracture tests of specimens representing typical stress-states were performed to make a fracture criterion of a plastic material (PC/ABS). The suggested method was validated by comparing simulation with test results.
Technical Paper

A Study of the Influence of Pad Properties and Disc Coning on High Speed Judder

2012-09-17
2012-01-1815
The effects of pad properties and thermal coning of discs on high speed judder were investigated using dynamometer and vehicle tests. The friction materials of different thermal conductivities were manufactured and the discs were design-modified to control the thermal coning during braking under high speed conditions. Brake Torque Variation(BTV) was measured to evaluate the judder propensity in the dynamometer tests and the vibration on steering wheel and brake pedal was measured in the vehicle tests. The results showed that the increase of thermal conductivity of pad could not affect the judder propensity during high speed braking below 350°C of disc temperature, however better disc design reduced judder propensity due to the lower thermal deformation. Moreover, the increase of pad compressibility can reduce judder propensity due to the increase of damping capacity.
X