Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Recycling of Automotive Tail Lamp Assembly

1997-02-24
970417
A new recycled material has been developed by using the scrap of tail lamp assembly, made of poly(methyl methacrylate) (PMMA) for the lens and acrylonitrile-butadiene-styrene terpolymer (ABS) for the housing. Lamp scrap was extruded in a twin-screw extruder, and mechanical properties of the scrap were compared with ABS, PMMA, and an ABS/PMMA (60/40) blend. The recycled material from 100% tail lamp scrap has similar modulus to the 60/40 blend, however, notched Izod impact strength and thermal resistance were lower than that of the blend, probably due to the presence of hot melt adhesive and silver paint. Scrap/virgin polymer mixtures showed improved thermal resistance and impact strength. The effects of composition and type of mixed polymer on mechanical properties were also investigated.
Technical Paper

Direct Coating Technology for Metallic Paint Replacement

2019-04-02
2019-01-0186
Direct Coating is a new processing technique which applies a single-layer polyurethane coating directly to a plastic part within a 2-shot molding cycle. The advantages of Direct Coating over traditional paint are improved surface quality, scratch resistance, and cost-effective processing. This concept has been previously showcased in high-gloss piano black with the simple geometry of the exterior door garnish. In this paper, the capabilities of Direct Coating are expanded to include metallic pigments and complex geometries for interior trim. For this development project, the Hyundai Sonata center fascia was selected as the target application due to the complex flow geometry around the bezel, and the high occurrence of customer contact, necessitating scratch and chemical resistance. Results of plaque-level testing showed that the coating material passed all requirements, including interior chemical resistance and scratch resistance.
Technical Paper

Development of Roof Crush Analysis Technique Using Simple Model with Plastic Hinge Concept

1996-02-01
960522
A computational technique for predicting roof crush resistance in the early design stage of vehicle development is presented in this paper. This technique developed a simple nonlinear finite element beam model with several nonlinear spring elements which represent plastic hinge behaviors after bending collapse. In general, these plastic hinge behaviors are apt to occur al each weak area of vehicle body structure. By idealizing actual sections as equivalent simple sections, maximum bending moments are calculated for all weak areas. Predicted results of roof crush resistance arc correlated well with test results.
Technical Paper

Characterization of High Temperature Properties in Al Matrix Composite Fabricated by the Low Pressure Squeeze Infiltration Process

1994-03-01
940809
Al matrix composites containing alumina (Al2O3) fibers are fabricated by the low pressure (25MPa) squeeze infiltration process which is suitable for the low cost mass production. Mechanical properties at room temperature as well as elevated temperatures (250°C, 350°C) are improved due to the presence of reinforcements. Upto 350°C, composites maintain a reasonable strength, which is much better than strength of the conventional Al alloy. Composites have equivalent wear rates to those of Ni - resist cast iron. Wear behavior is changed with the sliding speed. At low sliding speed, wear proceeds by the excessive failure of matrix and fiber, whilst, at higher sliding speed, matrix fracture near fiber plays a major role in wear. Wear resistance of 125°C is inferior to that of room temperature due to the reduction of mechanical properties followed by matrix softening and poor bonding.
Technical Paper

An Improved Methodology for Calculation of the Inertial Resistance of Automotive Latching Systems

2014-04-01
2014-01-0544
This paper outlines an improved methodology to perform calculations to verify the compliance of automotive door latch systems to minimum legal requirements as well as to perform additional due diligence calculations necessary to comprehend special cases such as roll over crashes and locally high inertial loadings. This methodology builds on the calculation method recommended by SAE J839 and provides a robust and clear approach for application of this method to cable release systems, which were not prevalent at the time J839 was originally drafted. This method is useful in and of itself but its utility is further increased by the application of the method to a Computer Aided Design (CAD) template (in this case for Catia V5), that allows some automation of the calculation process for a given latch type. This will result in a savings of time, fewer errors and allows for an iterative concurrent analysis during the design process.
X