Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Cabin Air Quality with Fractional Air Recirculation

2013-04-08
2013-01-1494
A fractional recirculation of cabin air was proposed and studied to improve cabin air quality by reducing cabin particle concentrations. Vehicle tests were run with differing number of passengers (1, 2, 3, and 4), four fan speed settings and at 20, 40, and 70 mph. A manual control was installed for the recirculation flap door so different ratios of fresh air to recirculated air could be used. Full recirculation is the most efficient setting in terms of thermal management and particle concentration reduction, but this causes elevated CO₂ levels in the cabin. The study demonstrated cabin CO₂ concentrations could be controlled below a target level of 2000 ppm at various driving conditions and fan speeds with more than 85% of recirculation. The proposed fractional air recirculation method is a simple yet innovative way of improving cabin air quality. Some energy saving is also expected, especially with the air conditioning system.
Technical Paper

Using Analytical Techniques to Understand the Impacts Intelligent Thermal Management Has on Piston NVH

2022-06-15
2022-01-0930
In order to align with net-zero CO2 ambitions, automotive OEMs have been developing increasingly sophisticated strategies to minimise the impact that combustion engines have on the environment. Intelligent thermal management systems to actively control coolant flow around the engine have a positive impact on friction generated in the power cylinder by improving the warmup rate of cylinder liners and heads. This increase in temperature results in an improved frictional performance and cycle averaged fuel consumption, but also increases the piston to liner clearances due to rapid warm up of the upper part of the cylinder head. These increased clearances can introduce piston slap noise and substantially degrade the NVH quality to unacceptable levels, particularly during warmup after soak at low ambient temperatures. Using analytical techniques, it is possible to model the thermo-structural and NVH response of the power cylinder with different warm up strategies.
Technical Paper

Two-Staged Modeling of Alternator

2007-08-05
2007-01-3471
The alternator provides power to vehicle electrical loads with the battery, and its maximum current depends on various factors such as electrical load, engine speed, thermal condition, and other variables. Above all, thermal effects make alternator simulations more complicated. For example statically similar conditions may show different results according to the temperature variation for each alternator operation. This paper proposes a two-stage statistically-based model structure which separates dynamic thermal effects from steady state performance. The method was validated by experiments and shows good predictive performance, suitable for use in test reduction.
Technical Paper

Thermal Characterization of Lithium-Ion Batteries under Varying Operating Conditions

2024-04-09
2024-01-2667
Despite the widespread adoption of lithium-ion batteries in various applications such as energy storage, concerns related to thermal management have been persisting, primarily due to the heat generated during their operation and the associated adverse effects on its efficiency, safety, and lifetime. Hence, the thermal characterization of lithium-ion batteries is essential for optimizing the layout of the battery cells for a pack design and the corresponding thermal management system. This study focuses on an experimental investigation of heat generation of Li-ion batteries under different operating conditions, including charge-discharge rates, ambient temperatures, states of charge, and compressive pressure. The experiments were conducted using a custom-designed multifunctional calorimeter, enabling precise measurement of the heat generation rate of the battery and the entropy coefficient. The measured results have shown a good match with the calculated heat generation rate.
Technical Paper

The Unified Relationship between Torque and Gear Ratio and Its Application in Multi-Step Automatic Transmissions

2016-04-05
2016-01-1098
The market demands for CO2 reduction and fuel economy have led to a variety of new gear set concepts of automatic transmissions with 4 planetary gear sets and 6 shift elements in recent years. Understanding the relationship between the torque of clutch and brake and gear ratio in the design stage is very important to assess new gear set concepts and to set up the control strategy for enhancing shift quality and to reduce the heat generation of clutch and brake. In this paper, a new systematic approach is used to unify the relationship between torque and gear ratio during the gear shift for all multi-step planetary automatic transmissions. This study describes the unified concept model with a lumped inertia regardless of the specific transmission layout and derives the principal unified relationship equations using torque and energy analysis, which prove that the sum of brake torque is always gear ratio -1 in every in-gear.
Technical Paper

The Study on the Optimization of Attachment Stiffness in Vehicle Body

2007-05-15
2007-01-2346
The achievement of improved NVH performance with light weighted body and low cost is very important, but difficult job to be accomplished in vehicle development. One of the various methods for the accomplishment of this goal is the optimization of the stiffness attached to a vehicle body and chassis. It is known that sufficient stiffness at the body attachments improves the flexibility of bushing rate tuning. In this paper, the theoretical consideration and analysis tool to estimate local stiffness value quantitatively are introduced. Also, the local stiffness values at various attachment locations in trimmed body are measured. The operational forces at body attachments are estimated through the TPA (Transfer Path Analysis). The suitability of attachment stiffness is judged based on the required NVH target to attain the optimal attachment stiffness in vehicle body.
Technical Paper

The Development of Lab-Simulation Test to Accelerate the Durability Validation of Engine Mounting and Wiring Harness

2003-03-03
2003-01-0949
With the advent of cars with computerized engines, drivers sometimes suffer discomfort with “check engine” light problem, and as a result, insist on increasing levels of reliability in their cars. Hence, reliability of the wiring harness has become a very important automotive design characteristic. On one hand, the more secure an engine mounting system is, the more stable the engine wiring harness is. In order to enhance their durability, car manufacturers need to perform many validation tests during the development phase which involves a lot of time and cost. In this study, a newly developed lab-simulation test is proposed to qualify the design of engine mounting and engine wiring early in the design cycle and reduce time and expense. The lab-simulation test has contributed to a significant cost and time reduction and has shown good correlation to the original proving ground test.
Technical Paper

The Development of Gear Tooth Micro Geometry Analysis Method for the Transmission Gear Noise Robustness

2019-03-25
2019-01-1414
Transmission error has been well known as the main source of excitation about transmission gear whine noise. To minimize transmission error in the gear system, various analysis methods have been studied and applied for long time. Many researchers were focused on gear micro geometry to achieve the low level of transmission error. But, if the gear is misaligned by several factors such as clearance and manufacturing tolerance error, then the gear noise can rapidly and unexpectedly be increased. To overcome this problem, this new analysis method has been developed and introduced. A transmission system simulation model was constructed, which considers various factors of transmission components such as clearance, stiffness and so on. The deformation and vibration characteristics of finite element models were validated by making comparison with frequency response function experiment.
Technical Paper

Systematic Automotive Wiring Guideline Based on Coupling Theory

2007-04-16
2007-01-0519
This paper introduces a systematic wiring guideline which includes coupling noise calculation, wire layout design, and wire type selection methodologies. The coupling theory between wires has been introduced long time ago but it was not successfully applied to real automotive wiring design due to the complexity in the theory such as large number of parameters and many different conditions in automotive wiring environment. In this paper, the complexity is reduced by separating physical parameters and electrical parameters and identifying controllable parameters and given parameters. This paper first introduces parameters which are used in the coupling equations and automotive wiring design, then the coupling noise calculation method which uses the coupling equations is introduced. The systematic automotive wiring guideline which prevents noise problem in various design stage such as system filter design, wire layout design, wire type selection is introduced.
Technical Paper

Study on Selective Electroplating for Pattern/Lighting on Plastic

2021-04-06
2021-01-0367
For making metal touch feeling and lighting simultaneously, selective electroplating is widely applied in button, panel and etc. in interior/exterior parts of automotive. In this paper, new selective electroplating with printing are suggested as an alternative manufacturing process of two shot molding, PC (Polycarbonate) and ABS (Acrylonitrile-Butadiene-Styrene). Manufacturing process of selective electroplating with printing is as follows: For preventing to plate metal layer in area of letter or symbol, masking ink is printed on parts, button, panel, etc., with electroplatable PC+ABS. After conventional electroplating process, the part has electroplated metal layer except for the printed area. It had been studied the composition of ink and PC+ABS for obtaining skip plating and light transmittance on printed area.
Technical Paper

Study of Sealing Mechanism to Prevent Oil Leakage for the Thermoplastic Cylinder Head Cover

2007-04-16
2007-01-0566
Most of car makers nowadays produce Cylinder Head Cover with Thermoplastic to get the benefit of weight and cost reduction. The production of Cylinder Head Cover with Thermoplastic brings a number of benefits such as enhancement in productivity, design freedom, integration with other parts and reduction in weight. However, NVH characteristics, sealing performance issues possibly caused by design of cover and gasket and loss of properties of materials when used for long-term period still remain as critical tasks to be solved. Especially in case of car OEMs strongly insist that we have to meet their severe specifications requirements so as to satisfy their customers' growing demand. Sealing performance is one of the core factors, which require continuous effort and studies to meet the OEM's specifications.
Journal Article

Reinforcement of Low-Frequency Sound by Using a Panel Speaker Attached to the Roof Panel of a Passenger Car

2020-09-30
2020-01-1570
The woofer in a car should be large to cover the low frequencies, so it is heavy and needs an ample space to be installed in a passenger car. The geometry of the woofer should conform to the limited available space and layout in general. In many cases, the passengers feel that the low-frequency contents are not satisfactory although the speaker specification covers the low frequencies. In this work, a thin panel is installed between the roof liner and the roof panel, and it is used as the woofer. The vibration field is controlled by many small actuators to create the speaker and baffle zones to avoid the sound distortion due to the modal interaction. The generation of speaker and baffle zones follows the inverse vibro-acoustic rendering technique. In the actual implementation, a thin acrylic plate of 0.53x0.2 m2 is used as the radiator panel, and the control actuator array is composed of 16 moving-coil actuators.
Technical Paper

Reduction of Interior Booming Noise for a Small Diesel Engine Vehicle without Balance Shaft Module

2009-05-19
2009-01-2121
Applying BSM (Balance shaft module) is a very common and effective way to reduce the 2nd-order powertrain vibration which is caused by the ill-balanced inertia force due to the oscillating masses inside an engine. However, the adoption of a BSM can also produce undesirable things especially in cost, fuel economy, starting performance, and so on. Therefore, for small vehicles, in which case cost and weight are key factors at the development stage, it is often required to develop competitive NVH performance without the expensive apparatus like a BSM. In this paper, in order to develop interior noise and vibration of a 4-cylinder vehicle without a BSM, we analyzed the contribution of some transfer paths for powertrain vibration, and could reduce interior booming noise by tuning the dynamic characteristic of the engine mount which was one of the largest transfer paths.
Technical Paper

Progressive Meta-Model Based Design Optimization for Lithium-ion Battery Pack to Improve Cell Cycle Life

2023-04-11
2023-01-0512
Lithium-ion battery has advantages of high energy density and cost effectiveness than other types of batteries. However due to the low mechanical stability, their performance is strongly influenced by environmental conditions. Especially, external pressure on a cell surface is a crucial factor because an appropriate force can improve battery cycle life, but excessive force may cause structural failure. In addition, battery pack is composed of various components so that uncertainties in dimension and material properties of each component can cause a wide variance in initial pressure. Therefore, it is important to optimize structural design of battery pack to ensure initial pressure in an effective range. In this paper, target stiffness of module structure was determined based on cell level cycle life test, then structural design has been optimized for weight reduction. Cell cycling tests were performed under different stiffness conditions and analyzed with regression model.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

2008-06-17
2008-01-1856
3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
Technical Paper

Performance Analysis and Valve Event Optimization for SI Engines Using Fractal Combustion Model

2006-10-16
2006-01-3238
On the basis of the newly-developed fractal combustion model, the engine-thermodynamic-cycle simulations were conducted with the 1D engine-cycle-simulation program AVL-BOOST for a passenger-car SI engine with a fully-variable valve train. Results of the simulations showed a good agreement with measurements for both full and part load at various engine speeds. On the basis of the thermodynamic model for the engine, the valve event optimization was carried out for both full and part load with a partial factorial DoE plan consisting of various valve event durations and timings. For each of the selected cases, an independent optimization for the ignition timing was performed to determine the minimum BSFC under a constraint on specified knock criteria. Satisfactory results for the valve event optimization were achieved.
Technical Paper

Partial Elasto-Hydrodynamic Lubrication Analysis for Cylindrical Conformal Contact Model Considering Effect of Surface Wave

2007-08-05
2007-01-3533
Numerous machine elements are operated in mixed lubrication regime where is governed by a combination of boundary and fluid film effects. The direct contact between two surfaces reduces a machines life by increasing local pressure. In order to estimate machine's life exactly, the effect of asperity contact should be considered in the lubrication model. In this study, new 3-dimensional partial elasto-hydrodynamic lubrication (PEHL) algorithm is developed. The algorithm contains the procedures to find out solid contact regions within the lubricated regime and to calculate both the pressure by fluid film and the contact pressure between the asperities of the solids. Using the algorithm, we conducted the PEHL analysis for the contact between the rotating shaft and the inside of pinion gear. To investigate the effect of surface topology two different surfaces with sinusoidal profile are used. Both film thickness and pressure are calculated successfully through the PEHL algorithm.
Technical Paper

Optimization of WRC Race Car Body and Rollcage Structure

2015-03-10
2015-01-0064
The rollcage for WRC race body/rollcage has been developed and optimized by DFSS methodology. It is designed on the principle of reducing it to a Min. of weight compared to the other OEM and the initial set-up model with the torsional stiffness and strength increased. As a result, 12% increased torsional stiffness, maximized strength and 3.7% weight reduction could be achieved. In terms of economics, it is feasible to have a production cost savings of about 11% per car and the effect is further, considering the development period is substantially decreased, 5 to 2 months. Also, in the process of optimizing rollcage structure, applicable items to monocoque body are suggested by investigating the parts and structures that highly affect the body performance.
Technical Paper

Optimization of Structural Rigidity of the Door Module Mounting part

2024-04-09
2024-01-2223
The recent surge in platforms like YouTube has facilitated greater access to information for consumers, and vehicles are no exception, so consumers are increasingly demanding of the quality of their vehicles. By the way, the door is composed of glass, moldings, and other parts that consumers can touch directly, and because it is a moving part, many quality issues arise. In particular, the door panel is assembled from all of the above-mentioned parts and thereby necessitates a robust structure. Therefore, this study focuses on the structural stiffness of the door inner panel module mounting area because the door module is closely to the glass raising and lowering, which is intrinsically linked to various quality issues.
Technical Paper

Optimization of Cold Start Operating Conditions in a Stoichiometric GDI Engine with Wall-guided Piston using CFD Analysis

2013-10-14
2013-01-2650
The purpose of this paper is to investigate the mixture formation and optimize the operating conditions under cold start in a stoichiometric (λ=1) GDI engine with wall-guided piston using a 3D commercial code, STAR-CD [8]. For GDI engine under cold start, it can be difficult to carry out the optimization of operating conditions by engine test alone without the understanding of mixture formation inside the combustion chamber. In this study, three cold start conditions of the catalyst heating mode with split injection, the cranking under freezing temperature and acceleration before engine warm-up which causes oil dilution were calculated. In particular, injection strategy for each cold start condition were optimized and compared to the engine test data. The previously validated spray models [6] were applied to the analysis of the spray formation and mixing process inside the combustion chamber.
X