Refine Your Search

Topic

Search Results

Technical Paper

A Development of Fuel Saving Driving Technique for Parallel HEV

2018-04-03
2018-01-1006
This paper examines the effect of pulse-and-glide (PnG) driving strategies on the fuel efficiency when applied on parallel HEVs. Several PnG strategies are proposed, and these include the electrical, mechanical, and combined PnG strategies. The electrical PnG strategy denotes the hybrid powertrain control tactics in which the battery is charged or discharged according to the power demanded while maintaining the constant vehicle speed. On the other hand, the mechanical PnG strategy denotes the powertrain control tactics in which the vehicle accelerates or decelerates according to the power load while minimizing the battery usage. The combined PnG strategy involves both electrical and mechanical strategies to find a balanced point in between them. Here, a tradeoff relationship between the fuel efficiency and the vehicle drivability related to the tracking performance of the desired target speed is revealed.
Technical Paper

A Development of the Driver IC in LED Rear Combination Lamp for Circuit Standardization

2021-04-06
2021-01-0850
Today, many automakers are using LED lamp sources in exterior lamps to establish brand awareness and introduce specialized lamp designs. These eye-catching LED lamp source solutions require many control functions as the lamp functions are diversified and advanced, and accordingly the requirements for standardization and optimization of controllers are increasing. In particular, our LED rear combination lamps have a variety of LED loads according to the design of the lamp model, the installation position, and the diagnostic regulations, so that the design complexity and the number of specifications of the controller are increased [4]. In recent years, more and more aesthetic designs and new technologies are used by various automakers to optimize their controllers in cooperation with global partners to optimize costs [1].
Technical Paper

A Research on Autonomous Vehicle Control in Track Beyond Its Limits of Handling

2021-04-06
2021-01-0977
This paper presents the research related to the self-driving system that has been actively carried out recently. Previous studies have been limited to ensure the path following performance in linear and steady state-alike handling region with small lateral acceleration. However, in the high speed driving, the vehicle cornering response is extended to nonlinear region where tire grips are saturated. This requires a technology to create the driving path for minimum time maneuvering while grasping the tire grip limits of the vehicle in real time. The entire controller consists of three stages-hierarchy: The target motion is determined in the supervisor phase, and the target force to follow the target behavior is calculated in the upper stage controller. Finally, the lower stage controller calculates the actuator phase control input corresponding to the target force.
Technical Paper

A Study for Fuel Economy Improvement on Applying New Technology for Torsional Vibration Reduction of Crank Pulley

2013-10-14
2013-01-2514
The method of Front End Auxiliary Drive (FEAD) system optimization can be divided into two ways. One is to use a mechanical device that decouples crank pulley from torsional vibration of crank shaft by using characteristics of spring. The other is to control belt tension through auto-tensioner in addition of alternator pulley device. Because the former case has more potential to reduce belt tension than the latter case, the development of mechanically decoupled crank pulley, despite of its difficulty of development, is getting popular among the industry. This paper characterizes latest crank pulley technologies, Crank Decoupler and Isolation Pulley, for torsional vibration reduction through functionality measurement result which composed of irregularity, slip, tensioner movement, belt span vibration, bearing hubload of idler and so on. Also it investigates their potential of belt tension reduction through steady state point fuel consumption test on dynamometer.
Technical Paper

A Study for Improving the Resistance to Fretting Corrosion of SCr 420 Gear Steel

2007-08-05
2007-01-3734
A study for improving the resistance to fretting corrosion of SCr 420 pinion gear was conducted. Fretting is the damage to contacting surfaces experiencing slight relative reciprocating sliding motion of low amplitude. Fretting corrosion is the fretting damage to unlubricated contacting surfaces accompanied by corrosion, mostly oxidation that occurs if the fretting occurs in air. Two kinds of conventional heat treatment and a newly designed one suggested for improving the resistance to the fretting corrosion of pinion gear were compared each other to find out what is the main factor for generating fretting corrosion phenomenon. Increased carbon potential at both the heating and diffusing zone and reduced time of tempering was found out to be a solution for improving the resistance to fretting corrosion of forged and heat treated gear steel. On the contrary, modified carbo-nitriding using ammonia gas has been getting worse the fretting corrosion problem.
Technical Paper

A Study of Low-Friction Road Estimation using an Artificial Neural-Network

2018-04-03
2018-01-0811
Road friction estimation algorithms had been studied for many years because it is very important factor for safety control and fuel efficiency of vehicle. But traditional solutions are hard to adapt in automotive industry because their performance is not sufficient enough and expensive to implement. Therefore, this paper proposes a road friction estimation algorithm based on a trained artificial neural-network which is low cost and robust. The suggested method doesn’t need expensive additional sensors such as optical or lidar sensor, also it shows better performance in real car environment compared to other algorithms based on vehicle dynamics. In this paper, we would describe this algorithm in detail and analyze the test results evaluated in real road conditions.
Technical Paper

A Study on Development of Body Structure Using Hydroforming of a Thin-Walled UHSS Tube

2013-03-25
2013-01-0035
Hydroforming process is an emerging manufacturing technology which allows engineers to use continuous closed section without flange for spot weld in a given package envelope. In this research, Hydroforming is applied to a front pillar and a roof side rail for improvement of obstruction angle, body stiffness and roof crush resistance. In addition, the joints of front / center pillar that were integrated into the hydroforming part and structure of package tray were improved. As a result, front pillar width is reduced by 23%, body torsional stiffness is increased by 45% and roof crush resistance is improved by 35%.
Technical Paper

A Study on Front End Auxiliary Drive(FEAD) System of 48V Mild Hybrid Engine

2018-04-03
2018-01-0414
48V mild hybrid engine is one of major eco-friendly technology for global CO2 reduction policy. The 48V mild hybrid engine enables to operate torque boost, recuperation and ISG status by MHSG(Mild Hybrid Starter and Generator). The FEAD(Front End Auxiliary Drive) system is a very important role to transfer MHSG power to crankshaft at the mild hybrid engine. The conventional FEAD configuration is relatively simple because it transfers power from crankshaft to auxiliary drive components in one direction. But the FEAD configuration of 48V mild hybrid engine is not simple due to bidirectional power transmission between crankshaft and MHSG. For instance, in case of torque boost mode, the tight side of auxiliary belt is entry span of MHSG. On the contrary, the tight side of auxiliary belt is exit span of MHSG at recuperation mode.
Journal Article

A Study on the Impact Resistance of Plastic Underbody Parts

2016-04-05
2016-01-0515
Impact resistance of plastic underbody parts was studied using simulated injection-molded specimen which can be tested according to different types of material used, injection molding variants like position and number of injection molding gates, and features of ribs. Material applied was glass fiber reinforced polyamide which can be used in underbody parts. Test was performed using several combinations of injection molding gates and rib types. From the test result, optimal design guide for plastic underbody parts was determined. Also, new high impact resistant plastic material made of glass fiber reinforced polyamide 66 (PA66) and polyamide 6 (PA6) alloy was developed and the material properties useful for CAE were determined. As a case study, oil pan and muffler housing were designed following the optimal design guide and CAE. And the reliability of the sample muffler housing designed was verified.
Technical Paper

A Study on the Improvement of Driver's Inconvenience to Ensure Driving Stability in Bad Weather Conditions

2023-04-11
2023-01-0651
Bad weather conditions such as torrential rain, heavy snow, and thick fog frequently occur worldwide. Vehicle accidents in such bad weather conditions account for a significant portion of all vehicle accidents, and the level of damage is relatively severe compared to other accidents that occur in clear weather. This paper analyzes the driver's driving stability in bad weather conditions, which has such a significant meaning, in various ways through experiments on the inconvenience experienced by the driver. In this study, three levels of bad weather conditions were implemented in a driving simulator environment to evaluate driver inconvenience for six activities. Through driving experiment, quantitative bio-signals and vehicle signals were analyzed in each weather condition. The SD survey was used to assess the driver's inconvenience level for activities performed while driving and analyze the ranking of inconvenience.
Technical Paper

A study on estimation of stuck probability in off-road based on AI

2024-04-09
2024-01-2866
After the COVID-19 pandemic, leisure activities and cultures have undergone significant transformations. Particularly, there has been an increased demand for outdoor camping. Consequently, the need for capabilities that allow vehicles to navigate not only paved roads but also unpaved and rugged terrains has arisen. In this study, we aim to address this demand by utilizing AI to introduce a 'Stuck Probability Estimation Algorithm' for vehicles on off-road. To estimate the 'Stuck Probability' of a vehicle, a mathematical model representing vehicle behavior is essential. The behavior of off-road driving vehicles can be characterized in two main aspects: firstly, the harshness of the terrain (how uneven and rugged it is), and secondly, the extent of wheel slip affecting the vehicle's traction.
Technical Paper

An MBSE Methodology for Cross-Domain Vehicle Performance Development

2024-04-09
2024-01-2499
Even if an optimal design is produced in the mid-to-late stages of development, when the maturity of development is increasing, it is already difficult to accept the proposal between the organizations and functions. In case the optimal proposal is made with a small amount of information in the preceding stage, it will be helpful for mutual decision-making. In addition, if all members have a system and development environment that enables access and utilization of necessary data in a timely manner, it is possible to produce quick results through collaboration. To implement such a system and development environment, “digital modeling" of tangible and intangible assets will be essential and to implement an "integrated IT environment" that can access and utilize digital models. Until now, Hyundai Motor Company has not yet fully established a digital development environment that all researchers can simultaneously utilize during the concept development stage.
Technical Paper

Analysis of Aerodynamic Characteristics of Fan-Type Wheels

2024-04-09
2024-01-2540
This research addresses the pressing need for reducing vehicle aerodynamic resistance, with a specific focus on mitigating wheel and tire resistance, which constitutes approximately 25% of the overall vehicle drag. While the prevailing method for reducing resistance in mass production development involves wheel opening reduction, it inadvertently increases wheel weight and has adverse effects on brake cooling performance. To overcome these challenges, novel complementary resistance reduction methods that can be employed in conjunction with an appropriate degree of wheel opening reduction are imperative. In this study, we introduce symmetrical wheels with a fan-like shape as a solution. The fan configuration influences the surrounding flow by either drawing it in or pushing it out, depending on the direction of rotation. Application of these fan-type wheels to a vehicle's wheels results in the redirection of flow inwards or outwards during high-speed driving due to wheel rotation.
Journal Article

Analysis of Influence of Tire F and M on Improvement of Vehicle On-Center Steering

2016-04-05
2016-01-1569
In this research, the influence of tire force and moment (F&M) characteristics on vehicle on-center steering performance was analyzed and then how to improve vehicle on-center performance was studied through controlling tire structure design parameter, tread pattern shape and tread grip characteristics. First, the relationship between vehicle on-center steering performance and tire F&M characteristics was identified by comparing vehicle steering measurements and tire F&M measurements. It was found that key factor of tire related with on-center performance is aligning torque at lower slip angles. As the aligning torque at slip angle 1° increases, on-center feel is improved. Second, the influence of tire design parameters on tire aligning torque was studied through F&M finite element (FE) analysis and measurement. It was found that the aligning torque at lower slip angle increases as stiffness of the tread and sidewall decreases.
Technical Paper

Analysis of Sensitivity and Optimization for Chassis Design Parameters on the X-Wind Stability

2015-03-10
2015-01-0025
In the view point of driving safety, the crosswind sensitivity of a vehicle becomes more important, as the driving speed in highway gets higher in these days. The sensitivity of a vehicle to crosswind depends on many factors, including the design of the suspension and aerodynamics of the body, etc. However, the knowledge about this phenomenon has still to be improved, in order to develop vehicle with optimum characteristics for crosswind stability. In this research, the physics behind the sensitivity of a vehicle is discussed in detail through various kinds of virtual test using computer aided engineering (CAE) simulation scheme. In the first, a reliable simulation model for vehicle, driver, wind generator and interactions among them is built. This simulation model is verified by comparison with test results of real vehicle. Then, the sensitivity analysis is carried out to find out the most influential design parameters.
Technical Paper

Body Cross-Sectional Stiffness Criteria for the Optimal Development of the BIW Weight and Torsional Stiffness

2021-04-06
2021-01-0797
Body-in-white plays a key role in protecting passengers in the event of collision between vehicles, and also endures external forces during cornering in a vehicle. Stiffness of body-in-white is the basic characteristic of a car body, and it is closely related to the full-vehicle-level performance such as body durability, ride and handling, etc. There have been many attempts to correlate body stiffness to full-vehicle-level performance, and studying the relationship between torsional body stiffness and durability has been the popular topic among others. In general, it is believed to be true that bodies with high torsional stiffness exhibit good durability performance, and in many cases this assumption seems to be verified. However, not all cases are true to this assumption. In this paper, relationship between torsional body stiffness and body durability has been closely studied.
Technical Paper

Co-operative Control of Regenerative Braking using a Front Electronic Wedge Brake and a Rear Electronic Mechanical Brake Considering the Road Friction Characteristic

2012-09-17
2012-01-1798
In this study, a co-operative regenerative braking control algorithm was developed for an electric vehicle (EV) equipped with an electronic wedge brake (EWB) for its front wheels and an electronic mechanical brake (EMB) for its rear wheels. The co-operative regenerative braking control algorithm was designed considering the road friction characteristic to increase the recuperation energy while avoiding wheel lock. A powertrain model of an EV composed of a motor, and batteries and a MATLAB model of the control algorithm were also developed. They were linked to the CarSim model of the vehicle under study to develop an EV simulator. The EMB and EWB were modeled with an actuator, screw, and wedge to develop an EMB and EWB simulator. A co-simulator for an EV equipped with an EWB for the front wheels and an EMB for the rear wheels was fabricated, composed of the EV and the EMB and EWB simulator.
Technical Paper

Compatibility between Brake Discs and Friction Materials in DTV Generation and Recovery Test

2005-10-09
2005-01-3918
A comparative study was carried out to investigate the DTV (disk thickness variation) behavior according to the types of brake disks (gray iron grade 250 and high-carbon gray iron grade 200, 170) with two typical friction materials (non-steel and low-steel friction materials). To evaluate DTV generation and recovery characteristics, a parasitic drag mode simulating highway driving (off-brake) and a normal braking mode simulating city traffic driving (on-brake) were used with an inertia brake dynamometer. Results showed that DTV and BTV were strongly affected by the microstructure, hardness level and distribution of the gray cast iron with the friction material types. The BTV was reduced in the friction two pairs using non-steel friction materials with high carbon grade disks and low-steel friction materials with high-carbon, low hardness disk. In particular, the pair of low-steel friction materials and high-carbon, low-hardness brake disks was more effective on DTV recovery.
Technical Paper

Development and optimization of jet impingement on dimpled plate for maximizing cooling performance of an inverter

2024-04-09
2024-01-2216
A need to develop a cooling method with high cooling performance like jet impingement is increased as high power of an inverter is required. Jet Impingement on the dimpled plate would increase thermal performance than that of flat plate. Many previous researchers have dealt with the multi jet impingement on flat plate and some results of the study on dimpled plate evaluate the effect on heat transfer coefficients on several limited cases, making it difficult to apply them to inverter designs. Therefore, in this paper, heat transfer performance, pressure drop, and robustness at micro-scale of jet impingement on the dimpled plate were investigated in detail and the correlations of each performance were proposed. Finally, the optimal design was presented. The cooling performance was influenced by the jet array and the effect of depth and width of the dimples.
Technical Paper

Development of Accelerated Corrosion Test Mode Considering Environmental Condition

2002-03-04
2002-01-1231
Accelerated simulation of vehicle corrosion in a controlled environment not only involves large chambers for actual vehicle tests, but also requires careful consideration of interactions between various parameters given a short time period within which the test is bounded. A new corrosion durability test mode reproducing various field conditions using salt spray, climatic, sunlight simulation and cold chambers has been developed. Verification of the test mode is carried out using four actual vehicle corrosion tests correlated against used cars of Nort h America and Northern Europe. The process of new corrosion test mode is discussed along with the characteristics of the test chambers.
X