Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Wheel Bearing Brinelling and a Vehicle Curb Impact DOE to Understand Factors Affecting Bearing Loads

2017-09-17
2017-01-2526
As material cleanliness and bearing lubrication have improved, wheel bearings are experiencing less raceway spalling failures from rotating fatigue. Warranty part reviews have shown that two of the larger failure modes for wheel bearings are contaminant ingress and Brinell damage from curb and pothole impacts. Warranty has also shown that larger wheels have higher rates of Brinell warranty. This paper discusses the Brinell failure mode for bearings. It reviews a vehicle test used to evaluate Brinell performance for wheel bearings. The paper also discusses a design of experiments to study the effects of factors such as wheel size, vehicle loading and vehicle position versus the bearing load from a vehicle side impact to the wheel. As the trend in vehicle styling is moving to larger wheels and low profile tires, understanding the impact load can help properly size wheel bearings.
Journal Article

Vehicle Integration Factors Affecting Brake Caliper Drag

2012-09-17
2012-01-1830
Disc brakes operate with very close proximity of the brake pads and the brake rotor, with as little as a tenth of a millimeter of movement of the pads required to bring them into full contact with the rotor to generate braking torque. It is usual for a disc brake to operate with some amount of residual drag in the fully released state, signifying constant contact between the pads and the rotor. With this contact, every miniscule movement of the rotor pushes against the brake pads and changes the forces between them. Sustained loads on the brake corner, and maneuvers such as cornering, can both produce rotor movement relative to the caliper, which can push it steadily against one or both of the brake pads. This can greatly increase the residual force in the caliper, and increase drag. This dependence of drag behavior on the movement of the brake rotor creates some vehicle-dependent behavior.
Technical Paper

Varying the Polyurethane Foam Ratio for Better Acoustic Performance and Mass Savings

2011-05-17
2011-01-1736
Flexible molded polyurethane foams are widely used in automotive industry. As porous-elastic materials, they can be used as decoupler layers in conventional sound insulation constructions or as sound absorbers in vehicle trim parts. Flexible molded polyurethane foams are produced by reacting of liquid Isocyanate (Iso) with a liquid Polyol blend, catalysts, and other additives. Their acoustic performance can be changed by varying the mixing ratio, the weight proportion of two components: Iso and Polyol. Consequently, the sound insertion loss (IL) of barrier/foam constructions and acoustic absorption of a single foam layer will vary. In this paper, based on one industry standard flexible molded polyurethane foam process, the relationship between foam mixing ratio and foam acoustic performance is studied in terms of IL and sound absorption test results.
Technical Paper

Utilizing Finite Element Tools to Model Objective Seat Comfort Results

2012-04-16
2012-01-0074
The comfort assessment of seats in the automotive industry has historically been accomplished by subjective ratings. This approach is expensive and time consuming since it involves multiple prototype seats and numerous people in supporting processes. In order to create a more efficient and robust method, objective metrics must be developed and utilized to establish measurable boundaries for seat performance. Objective measurements already widely accepted, such as IFD (Indentation Force Deflection) or CFD (Compression Force Deflection) [1], have significant shortcomings in defining seat comfort. The most obvious deficiency of these component level tests is that they only deal with a seats' foam rather than the system response. Consequently, these tests fail to take into account significant factors that affect seat comfort such as trim, suspension, attachments and other components.
Technical Paper

Use of Active Rear Steering to Achieve Desired Vehicle Transient Lateral Dynamics

2018-04-03
2018-01-0565
This paper studies the use of active rear steering (4-wheel steering) to change the transient lateral dynamics and body motion of passenger cars in the stable or linear region of the tires. Rear steering systems have been used for several decades to improve low speed turning maneuverability and high speed stability, and various control strategies have been previously published. With a model-based, feed-forward rear steer control strategy, the lateral transient can be influenced separately from the steady-state steering gain. This lateral transient is influenced by many vehicle parameters, but we will look at the influence of active rear steer and various tire types such as all-season, snow, and summer. This study will explore the ability for a rear steering system to change the lateral transient to a step steer input, compared to the effect of changing tire types.
Technical Paper

Transient Nonlinear Full-Vehicle Vibration Analysis

2017-03-28
2017-01-1553
This paper presents a transient vibration analysis of a nonlinear full-vehicle. The full-vehicle model consists of a powertrain, a trimmed body, a drive line, and front and rear suspensions with tires. It is driven by combustion forces and runs on a road surface. By performing time-domain simulation, it is possible to capture nonlinear behavior of a vehicle such as preload due to gravitational force, large deformation, and material nonlinearity which cannot be properly treated in the conventional steady state analysis. In constructing a full-vehicle, validation process is essential. Validation process is applied with respect to the assembling sequence. The validation starts with component levels such as tires, springs, shock absorbers, and a powertrain, and then the full-vehicle model is constructed. Model validation is done in two aspects; one is model accuracy and the other is model efficiency.
Technical Paper

Transient Aerodynamics Simulations of a Passenger Vehicle during Deployment of Rear Spoiler

2024-04-09
2024-01-2536
In the context of vehicle electrification, improving vehicle aerodynamics is not only critical for efficiency and range, but also for driving experience. In order to balance the necessary trade-offs between drag and downforce without significant impact on the vehicle styling, we see an increasing amount of active aerodynamic solutions on high-end passenger vehicles. Active rear spoilers are one of the most common active aerodynamic features. They deploy at high vehicle speed when additional downforce is required [1, 2]. For a vehicle with an active rear spoiler, the aerodynamic performance is typically predicted through simulations or physical testing at different static spoiler positions. These positions range from fully stowed to fully deployed. However, this approach does not provide any information regarding the transient effects during the deployment of the rear spoiler, which can be critical to understanding key performance aspects of the system.
Technical Paper

Tooling Effects on Edge Stretchability of AHSS in Mechanical Punching

2019-04-02
2019-01-1086
Edge stretchability reduction induced by mechanical trimming is a critical issue in advanced high strength steel applications. In this study, the tooling effects on the trimmed edge damage were evaluated by the specially designed in-plane hole expansion test with the consideration of three punch geometries (flat, conical, and rooftop), three cutting clearances (6%, 14%, and 20%) and two materials grades (DP980 and DP1180). Two distinct fracture initiation modes were identified with different testing configurations, and the occurrence of each fracture mode depends on the tooling configurations and materials grades. Digital Image Correlations (DIC) measurements indicate the materials are subject to different deformation modes and the various stress conditions, which result in different fracture initiation locations.
Technical Paper

Thermomechanical Fatigue Behavior of a Cast Austenitic Stainless Steel

2024-04-09
2024-01-2683
Cast austenitic stainless steels, such as 1.4837Nb, are widely used for turbo housing and exhaust manifolds which are subjected to elevated temperatures. Due to assembly constraints, geometry limitation, and particularly high temperatures, thermomechanical fatigue (TMF) issue is commonly seen in the service of those components. Therefore, it is critical to understand the TMF behavior of the cast steels. In the present study, a series of fatigue tests including isothermal low cycle fatigue tests at elevated temperatures up to 1100°C, in-phase and out-of-phase TMF tests in the temperature ranges 100-800°C and 100-1000°C have been conducted. Both creep and oxidation are active in these conditions, and their contributions to the damage of the steel are discussed.
Technical Paper

The Study for the Improvement of On-Center Feel with MTS Technique

2007-04-16
2007-01-0990
On-center feel is a multivariate problem that a performance is represented using put-together several sub-characteristics such as torque feedback, response, torque linearity, hysteresis, returnability, etc. For the improvement of a multivariate problem, multi objective optimization should be carried out. However each characteristic which ignores correlation between characteristics is usually optimized up to now. The objective of this research, Mahalanobis Taguchi System (MTS) technique is grafted to on-center steering feel to obtain the efficient improvement. MTS technique can optimize the unified on-center index which is generated in consideration of correlation between characteristics. In this research, first an effective value of MTS technique is verified with on-center steering feel which has the multivariate characteristic. Second, on-center steering feel is improved using MTS technique and Design of Experiments (DOE).
Technical Paper

The Simulation of ABS Stopping Distance

2011-04-12
2011-01-0570
Recently, customers have been demanding increased safety features in cars. Meanwhile, auto magazines now seek to publish the stopping distance. Further, the car development period has become shorter. For all these reasons, a precise estimation of the ABS stopping distance has grown important. A few steps that can be taken to improve accurate simulations of the ABS stopping distance are as follows: 1 Development of the tire hysteresis concept, its confirmation by test results, and then its application. 2 Free diagram development of the wheel combining ideal braking force, real braking force, and specific tire quality. 3 Modeling of HCU. 4 Application of ABS and EBD logic. 5 Application of booster characteristic to the section of early braking.
Journal Article

The Role of Copper on the Friction and Wear Performance of Automotive Brake Friction Materials

2011-09-18
2011-01-2367
Copper has been regarded as one of the indispensable ingredients in the brake friction materials since it provides high thermal diffusivity at the sliding interface. However, the recent regulations against environmentally hazardous ingredients limit the use of copper in the commercial friction material and much effort has been made for the alternatives. In this work, the role of the cuprous ingredients such as copper fiber, copper powder, cupric oxide (CuO), and copper sulfide (CuS) are studied using the friction materials based on commercial formulations. The investigation was performed using a full inertial brake dynamometer and 1/5 scale dynamometer for brake performance and wear test. Results showed that the cuprous ingredients played a crucial role in maintaining the stable friction film at the friction interface, resulting in improved friction stability and reduced aggressiveness against counter disk.
Journal Article

The Influence of Wheel Rotations to the Lateral Runout of a Hybrid Material or Dimensionally Reduced Wheel Bearing Flange

2021-10-11
2021-01-1298
The automotive industry is continuously striving to reduce vehicle mass by reducing the mass of components including wheel bearings. A typical wheel bearing assembly is mostly steel, including both the wheel and knuckle mounting flanges. Mass optimization of the wheel hub has traditionally been accomplished by reducing the cross-sectional thickness of these components. Recently bearing suppliers have also investigated the use of alternative materials. While bearing component performance is verified through analysis and testing by the supplier, additional effects from system integration and performance over time also need to be comprehended. In a recent new vehicle architecture, the wheel bearing hub flange was reduced to optimize it for low mass. In addition, holes were added for further mass reduction. The design met all the supplier and OEM component level specifications.
Technical Paper

The Influence of Wheel Assembly Non Uniformity on Disc Brake Lateral Runout

2011-09-18
2011-01-2378
The importance of achieving good (low) assembled lateral runout of the brake disc is well recognized in the industry - it is a critical feature for avoiding issues such as wear-induced disc thickness variation and vibration/shudder during braking. Significant efforts and expense has been invested by the industry into reducing disc brake lateral runout. However, wheel assemblies also have some inherent runout, which in turn cause cyclical forces to act on the brake corner during vehicle movement. Despite the stiffness of the wheel bearing (which aligns the brake disc with the caliper and knuckle), these “tire non-uniformity” forces can be sufficient to promote deflection of the assembly that is appreciable compared to typical disc lateral runout tolerances. This paper covers measurements of this phenomenon on three different vehicles (compact, mid-size, and large cars), under a variety of operating conditions such as speed, wheel assembly runout, and wheel assembly balance.
Technical Paper

The Development and Experiment of the Variable Rack Stroke (VRS) System

2005-04-11
2005-01-1270
The turning radius is designed with considering sufficient gap between front tires including snow chains and front parts around wheels (e.g. side member, wheel guard, and suspension control arms). Therefore, when we don't use the snow chain needed only in winter season, there remains gap between tires and elements around front wheels. Since there is much available space between the front tire and other parts around wheel without the snow chains, we strived to increase the steering angle of the front wheels for the smaller turning radius of the vehicle. In this paper, with the idea, we strived to develop the VRS (Variable Rack Stroke) system which is invented by Hyundai Motor Company for the first time around world and is capable of varying the minimum tuning radius of the vehicle.
Technical Paper

The Characteristics of TPE for Skin of Automotive Instrument Panel

2002-03-04
2002-01-0313
In order to replace PVC with TPO as I/P skin layer of invisible PAB, the elongation behavior, vacuum thermoforming, thermal, light resistance and low temperature PAB deployment of TPO were investigated. With the elongation properties; 50cN ↑ melt strength, 300mm/s ↑ breaking speed, 200s ↑ breaking time, TPO was vacuum-formed well like PVC. The thermal and light resistances of TPO were superior to PVC. In terms of low temperature airbag test, PVC was fractured with the brittle behavior during the deployment. TPO, however, showed the ductile fracture. And also when TPO was used for PAB cover, the elongation ratio of TPO was also important criterion for the normal break without any interference to I/P part, outside of PAB. The 300∼500% elongation ratio was most preferable.
Technical Paper

The COANDA Flow Control and Newtonian Concept Approach to Achieve Drag Reduction of Passenger Vehicle

2001-03-05
2001-01-1267
In order to reduce total drag during aerodynamic optimization process of the passenger vehicle, induced drag should be minimized and pressure drag should be decreased by means of applying streamlined body shape. The reduction of wake area could decrease pressure drag, which was generated by boundary layer separation. The induced drag caused by rear axle lift and C-pillar vortex can be reduced by the employing of trunk lid edge and kick-up or an optimized rear spoiler. When a rear spoiler or kick-up shape was installed on the rear end of a sedan vehicle, drag was reduced but the wake area became larger. This contradiction cannot be explained by simply using Bernoulli’s principle with equal transit or longer path theory. Newtonian explanation with COANDA effect is adopted to explain this phenomenon. The relationships among COANDA effect, down wash, C-pillar vortex, rear axle lift and induced drag are explained.
Technical Paper

The CAE Analysis of a Cylinder Head Water Jacket Design for Engine Cooling Optimization

2018-04-03
2018-01-1459
Hyundai's new engine is developed which optimize the cooling efficiency for knocking improvement and friction reduction. The cooling concepts for this purpose are 1) equalizing the temperature among cylinders by flow optimization, 2) cooling the required area intensively, 3) adopting ‘active flow control’ and 4) enlarging fuel economy at high speed range. In order to realize the cooling concept, 1) cross-flow, 2) compact water jacket & exhaust cooling, 3) flow control valve and 4) cylinder head with integrated exhaust manifold are considered. Improvement of knocking and friction reduction by increased cooling water temperature makes fuel efficiency possible. On the other hand, in order to strengthen the cooling around the combustion chamber and to reduce the deviation among the combustion chamber of cylinders, it is required to design the head water jacket shape accordingly.
Technical Paper

The Analysis of Brake Squeal Noise Related to the Friction Properties of Brake Friction Materials

2019-09-15
2019-01-2132
The friction properties related to squeal noise was analyzed with the development histories and simplified computational method. Firstly, the development histories were investigated especially focusing on the case which the friction materials were modified to improve squeal noise occurrence. Based on the histories, the friction properties of selected friction materials were newly measured using dynamometer. The average friction coefficient levels, torque oscillations, the increment of friction coefficient during full-stop, and etc. were compared with the squeal noise occurrence, and the results showed that increase of friction properties cause production of squeal noise. The result suggested that the size of friction energy was important factors related to triggering the squeal noise. Also, the contact conditions between rotor disc and friction materials were significant factors deciding the noise occurrence.
Technical Paper

Suppression of Open-Jet Pressure Fluctuations in the Hyundai Aeroacoustic Wind Tunnel

2004-03-08
2004-01-0803
Peak pressure fluctuation amplitudes in the ¾ open-jet test-section of the Hyundai Aeroacoustic Wind Tunnel have been reduced from root-mean-square levels equal to 6% of the test-section dynamic pressure to levels of less than 0.5% over almost the full wind speed range of the tunnel. The improvement was accomplished using a retrofit of the test-section collector. Using an analysis of the physics of the problem, it was found that the HAWT pressure fluctuations could be accurately modeled as a resonance phenomenon in which acoustic modes of the full wind tunnel circuit are excited by a nozzle-to-collector edgetone-feedback loop. Scaling relations developed from the theory were used to design an experiment in 1/7th scale of the HAWT circuit, which resulted in the development of the new collector design. Data that illustrate the benefit of the reduction in pressure fluctuation amplitudes on passenger-car aerodynamic force measurements are presented.
X