Refine Your Search

Topic

Author

Search Results

Technical Paper

XiLS (X in the Loop Simulation) Based Thermal Management Development

2024-04-09
2024-01-2272
The significance of thermal management performance in electric vehicles (EVs) has grown considerably, leading to increased complexity in thermal systems and a rapid rise in safety and quality-related concerns. The present real-vehicle-based development methods encounter several constraints in their approach when dealing with highly complex systems. Huge number of verification and validation work To overcome these limitations and enhance the thermal system development process, a novel virtual development environment established using the XiLS (X in the Loop Simulation) methodology. This XiLS methodology basically based on real-time coupling between physical thermal system hardware and analytical models for the other systems of vehicle. To control vehicle model and thermal system, various options were realized through hardware, software and model for VCU (Vehicle control unit) and TMS (Thermal management system) control unit.
Technical Paper

Using Analytical Techniques to Understand the Impacts Intelligent Thermal Management Has on Piston NVH

2022-06-15
2022-01-0930
In order to align with net-zero CO2 ambitions, automotive OEMs have been developing increasingly sophisticated strategies to minimise the impact that combustion engines have on the environment. Intelligent thermal management systems to actively control coolant flow around the engine have a positive impact on friction generated in the power cylinder by improving the warmup rate of cylinder liners and heads. This increase in temperature results in an improved frictional performance and cycle averaged fuel consumption, but also increases the piston to liner clearances due to rapid warm up of the upper part of the cylinder head. These increased clearances can introduce piston slap noise and substantially degrade the NVH quality to unacceptable levels, particularly during warmup after soak at low ambient temperatures. Using analytical techniques, it is possible to model the thermo-structural and NVH response of the power cylinder with different warm up strategies.
Technical Paper

Third Generation 980 Class AHSS: A Viable Alternative to Replace Press-Hardenable Steels (PHS) in Automotive Rear Rail Applications

2020-04-14
2020-01-0534
Commercially available Third Generation Advanced High Strength Steels (GEN3 AHSS) are qualified by automakers worldwide. With an excellent combination of strength and ductility, GEN3 AHSS are cold-formable and have shown potential to replace press hardenable steels (PHS) in structural applications. With overall formability equivalent to 590DP, U. S. Steel 980 GEN3 AHSS (980 XG3™ AHSS) may achieve cold-formed component geometries similar to those achieved by hot-formed PHS. Furthermore 980 GEN3 AHSS demonstrates a substantial increase in post-forming yield strength due to the combined effects of work-hardening and bake-hardening-thereby contributing strongly toward crash energy management performance. The technical challenges and attributes of cold-formed 980 GEN3 AHSS are explored in this paper for an automotive rear rail application (currently PHS), including: formability analysis, wrinkling elimination and springback compensation.
Technical Paper

The Novel Centrifugal Air Compressor Development for the Fuel Cell Electric Vehicles

2014-10-13
2014-01-2868
Fuel Cell Electric Vehicles (FCEV) is zero emission vehicles because it produces only water as a byproduct. The other advantages are a long driving range and a quick refueling time compared with the pure electric vehicle. The air compressor supply compressed air to the cathode of fuel cell stack to chemically react with the hydrogen from the compressed hydrogen tank to generate electric power. The centrifugal air compressor can provide oil free clean air and has significantly improved durability/NVH performance compared with competitor's screw type air compressors. It has other advantages such as compact size and high efficiency at the actual vehicle design condition. In this paper we will describe the centrifugal air compressor's NVH improvement process including rotor resonant mode, rotor unbalance, stator's structural noise, and bearing problems.
Technical Paper

Simultaneous Free-Size, Gauge, and Composite Optimization for Automotive Chassis Design

2022-03-29
2022-01-0792
Rising gas prices and increasingly stringent vehicle emissions standards have pushed automakers to increase fuel economy. Mass reduction is the most practical method to increase fuel economy of a vehicle. New materials and CAE technology allow for lightweight automotive components to be designed and manufactured, which outperform traditional component designs. Topology optimization and other design optimization techniques are widely used by designers to create lightweight structural automotive parts. Other design optimization techniques include free-size, gauge, and size optimization. These optimization techniques are typically used in sequence or independently during the design process. Performing various types of design optimization simultaneously is only practical in certain cases, where different parts of the structure have different manufacturing constraints.
Journal Article

Reduced Power Seat Heater System Using Thermal Wave Technology

2020-04-14
2020-01-0872
This paper presents a method of controlling the seat heater using intentional oscillations between multiple, independently controlled temperatures (each with its own tolerance range). The amplitude and frequency of these oscillations can be changed based on secondary trigger events such as changes in the interior temperature. The benefits of using this technique to heat the seat surface are improved thermal sensation and reduced energy usage over the typical drive time.
Technical Paper

Performance Recovery of Fuel Cell Stack for FCEV

2015-04-14
2015-01-1171
This paper proposes the several methods for recovering the performance of degraded fuel cell stack for FCEV. Recovery procedure is focused on the reduction of oxidized layer and desorption of sulfonated anion formed on the surface of platinum catalyst during automotive operation at cathode side. As a result of application of recovering methods, it is possible to partially rehabilitate the performance of fuel cell stack by ca. 20-30%. In additions, it is expected that the durability of fuel cell can be improved ultimately with an application of recovery process.
Journal Article

Parts Consolidation of Automotive Front Crossmember: From Two-Piece CFRP Design to One-Piece Design

2022-03-29
2022-01-0342
As demand for fuel efficiency rises, an increasing number of automotive companies are replacing their existing metal designs with carbon-fiber-reinforced polymer (CFRP) redesigns. Due to the handling and manufacturing processes associated with CFRP materials, engineers have more design freedom to create complex, light-weight designs, which would be infeasible to manufacture using metal. Additionally, it is likely that by redesigning with CFRP, many steel assemblies can be consolidated to significantly fewer parts, simplifying or potentially eliminating the assembly process. When designing an automotive crossmember using CFRP materials, designers often aim for a two-piece design (top and bottom), while utilizing reinforcement material where needed. The joining of these two pieces is typically accomplished with many mechanical fasteners and adhesives, significantly increasing the part count and the manufacturing complexity.
Technical Paper

New Index for Diagnosis of Abnormal Combustion Using a Crankshaft Position Sensor in a Diesel Engine

2019-04-02
2019-01-0720
Most research of internal combustion engine focuses on improving the fuel economy and reducing exhaust emissions to satisfy regulations and marketability. Engine combustion is a key factor in determining engine performance. Generally, engine operating parameters are optimized for the best performance and less exhaust emissions. However, abnormal combustion results in engine conditions that are far from an optimized operation. Abnormal combustion, including a misfire, can happen for a variety of reasons, such as superannuated vehicles, extreme changes in the driving environment, etc. Abnormal combustion causes serious deterioration of not only noise, vibration and harshness (NVH), but also the fuel economy and exhaust emission. NVH stands for unwanted noise, vibration and harshness from the vehicle. The misfiring especially deteriorates vehicle comfortability. Abnormal combustion at one cylinder breaks the exciting force balance between cylinders and causes unexpected vibration.
Technical Paper

Methane Conversion in Stoichiometric Natural Gas Engine Exhaust

2024-04-09
2024-01-2632
Stoichiometric natural gas (CNG) engines are an attractive solution for heavy-duty vehicles considering their inherent advantage in emitting lower CO2 emissions compared to their Diesel counterparts. Additionally, their aftertreatment system can be simpler and less costly as NOx reduction is handled simultaneously with CO/HC oxidation by a Three-Way Catalyst (TWC). The conversion of methane over a TWC shows a complex behavior, significantly different than non-methane hydrocarbons in stoichiometric gasoline engines. Its performance is maximized in a narrow A/F window and is strongly affected by the lean/rich cycling frequency. Experimental and simulation results indicate that lean-mode efficiency is governed by the palladium’s oxidation state while rich conversion is governed by the gradual formation of carbonaceous compounds which temporarily deactivate the active materials.
Journal Article

Lightweight Wheel Bearing with Dissimilar Materials for Vehicle

2019-09-15
2019-01-2134
Limited fossil fuel resources, air pollution, and global warming all drive strengthening of fuel economy and vehicle emission standards globally. Much R&D continues to be dedicated to improve fuel efficiency of automobiles and to reduce exhaust gasses. These include improvement of engine/driveline performance for higher efficiency, development of alternative energy, and minimization of air resistance through aerodynamic design optimization. OEM weight reduction-focused research has extended into chassis components (steering knuckle, brakes, control arms, etc.) in sequence from body-in-white(BIW). Wheel bearings, one of the core components of a driveline and part of a vehicle’s unsprung mass, are also being required to reduce weight. Conventionally, wheel bearings have achieved “lightweighting” primarily through design optimization methods. They have been highly optimized today using steel based materials.
Technical Paper

Fault Diagnosis of an Engine through Analyzing Vibration Signals at the Block

2020-09-30
2020-01-1568
Unpredictable faults oriented from ambiguous reasons could occur in an engine of a vehicle. However, there are some symptoms from which an engine is working abnormally before the engine is stalled by faults. In this paper, methods for diagnosis of engine faults by using vibrations are proposed. Through bench tests, to extract features for fault diagnosis, various samples with normal and abnormal conditions are prepared and vibration signals from the block of an engine are measured and analyzed. To consider cost and performance of a sensor, vibrations from a knock sensor signal as well as accelerometers are analyzed. Measured vibration signals are synchronized with signal of the crank position sensor and analyzed to detect which event is involved. Modulation analysis and Hilbert transform are applied to extract features representing the symptoms of engine faults and to indicate when the abnormal event happens, respectively.
Technical Paper

Exploring New Joining Techniques of CFRP Cross Member Chassis

2022-03-29
2022-01-0337
Increasing fuel prices and escalating emissions standards, are leading car manufacturers to develop vehicles with higher fuel efficiency. Reducing the mass of the vehicle is one technique to improve fuel efficiency. Shifting from metals to composite materials is a promising approach for great reductions to the vehicle mass. As more composite parts are introduced into vehicles, the approach to joining components is changing and requiring more investigation. Metallic chassis components are traditionally joined with mechanical fasteners, while composites are generally joined with adhesives. In a collaboration between Queen’s University and KCarbon, an automotive composite crossmember is being developed. A variety of lap joint geometries were modeled into a the crossmember assembly for composite-composite joints. Finite element-based optimization methods were applied to reduce mass of the crossmember. The optimized masses showed a 5% difference between the three joint geometries analyzed
Technical Paper

Development of Boiling Prediction Method in LP-EGR Cooler and Shape Optimization for Suppressing Boiling using Boiling Index

2021-04-06
2021-01-0228
An EGR system has been significantly used in order to cope with reinforced exhaust gas regulation and enhancement of fuel efficiency. For the well-designed EGR cooler, performance analysis is basically required. Furthermore, boiling prediction of the EGR cooler is especially essential to evaluate durability failure of abnormal operating conditions in DPF. However, due to intrinsic complexity of detailed 3-dimensional heat transfer tubes in the EGR cooler, no precise technique of boiling prediction has been developed. Therefore, this research had been performed in order to fulfill 3 goals: (1) development of 3-dimentional performance prediction technique including boiling occurrence, (2) generation and validation of a new evaluation index for boiling, (3) development of an optimized EGR cooler for suppressing boiling. In order to increase analysis accuracy and reduce analysis efforts at the same time, 3-dimensional single-phase flow analysis was developed.
Technical Paper

Characterization of High-Tumble Flow Effects on Early Injection for a Lean-Burn Gasoline Engine

2023-04-11
2023-01-0238
The influence of early induction stroke direct injection on late-cycle flows was investigated for a lean-burn, high-tumble, gasoline engine. The engine features side-mounted injection and was operated at a moderate load (8.5 bar brake mean effective pressure) and engine speed (2000 revolutions per minute) condition representative of a significant portion of the duty cycle for a hybridized powertrain system. Thermodynamic engine tests were used to evaluate cam phasing, injection schedule, and ignition timing such that an optimal balance of acceptable fuel economy, combustion stability, and engine-out nitrogen oxide (NOx) emissions was achieved. A single cylinder of the 4-cylinder thermodynamic engine was outfitted with an endoscope that enabled direct imaging of the spark discharge and early flame development.
Technical Paper

Benefits of Octane-On-Demand in an E10-Gasoline Engine Vehicle Using an On-Board Fuel Separator

2022-03-29
2022-01-0424
Knock in gasoline engines at higher loads is a significant constraint on torque and efficiency. The anti-knock property of a fuel is closely related to its research octane number (RON). Ethanol has superior RON compared to gasoline and thus has been commonly used to blend with gasoline in commercial gasolines. However, as the RON of a fuel is constant, it has not been used as needed in a vehicle. To wisely use the RON, an On-Board Separation (OBS) unit that separates commercial gasoline with ethanol content into high-octane fuel with high ethanol fraction and a lower octane remainder has been developed. Then an onboard Octane-on-demand (OOD) concept uses both fuels in varying proportion to provide to the engine a fuel blend with just enough RON to meet the ever changing octane requirement that depends on driving pattern.
Technical Paper

An Experimental Study on the Knock Mitigation Effect of Coolant and Thermal Boundary Temperatures in Spark Ignited Engines

2018-04-03
2018-01-0213
Increasing compression ratio is essential for developing future high-efficiency engines due to the intrinsic characteristics of spark-ignited engines. However, it also causes the unfavorable, abnormal knocking phenomena which is the auto-ignition in the unburned end-gas region. To cope with regulations, many researchers have been experimenting with various methods to suppress knock occurrence. In this paper, it is shown that cooling the combustion chamber using coolants, which is one of the most practical methods, has a strong effect on knock mitigation. Furthermore, the relationship between thermal boundary and coolant temperatures is shown. In the beginning of this paper, knock metrics using an in-cylinder pressure sensor are explained for readers, even though entire research studies cannot be listed due to the innumerableness. The coolant passages for the cylinder head and the liner were separated to examine independent cooling strategies.
Technical Paper

An Experimental Investigation of In-Cylinder Flow Motion Effect on Dual-Fuel Premixed Compression Ignition Characteristics

2020-04-14
2020-01-0306
The combustion process using two fuels with different reactivity, known as dual-fuel combustion or RCCI is mainly studied to reduce emissions while maintaining thermal efficiency compared to the conventional diesel combustion. Many studies have proven that dual-fuel combustion has a positive prospect in future combustion to achieve ultra-low engine-out emissions with high indicated thermal efficiency. However, a limitation on high-load expansion due to the higher maximum in-cylinder pressure rise rate (mPRR) is a main problem. Thus, it is important to establish the operating strategy and study the effect of in-cylinder flow motion with dual-fuel combustion to achieve a low mPRR and emissions while maintaining high-efficiency. In this research, the characteristics of gasoline-diesel dual-fuel combustion on different hardware were studied to verify the effect of the in-cylinder flow motion on dual-fuel combustion.
Technical Paper

A Study on the Robust Crash Performance Structure of Continuous Fiber Thermoplastic Composite Cowl Crossbar

2022-03-29
2022-01-0872
Recently, keen interest has been focused on the reduction of fuel consumption through the development of eco-friendly and weight-effective vehicles. This is due in part to the strengthening of regulatory standards for fuel efficiency in each country. This study will focus on the optimization of the IP (Instrument Panel) module, in particular, the cowl crossbar, which in some vehicles, can account for more than 33% of the IP module weight. The design objectives of the cowl crossbar were to use continuous fiber thermoplastic composite materials to achieve high stiffness, while optimizing the strength to weight performance as evaluated through vehicle sled and crash testing. This research will introduce the development and optimization methodology for an alternative material, which achieved about a 30% weight reduction as compared to steel.
Technical Paper

A Study on the Correlation between Heat-Treatment Microstructure and Mechanical Properties of Additive Manufactured Al-Si-Mg Alloy with Bulk and Lattice Structure for Weight Reduction of Vehicle Parts and Application of Shock Absorbing Regions

2024-04-09
2024-01-2574
This study delves into the microstructural and mechanical characteristics of AlSi10Mg alloy produced through the Laser Powder Bed Fusion (L-PBF) method. The investigation identified optimal process parameters for AlSi10Mg alloy based on Volume Energy Density (VED). Manufacturing conditions in the L-PBF process involve factors like laser power, scan speed, hatching distance, and layer thickness. Generally, high laser power may lead to spattering, while low laser power can result in lack-of-fusion areas. Similarly, high scan speeds may cause lack-of-fusion, and low scan speeds can induce spattering. Ensuring the quality of specimens and parts necessitates optimizing these process parameters. To address the low elongation properties in the as-built condition, heat treatment was employed. The initial microstructure of AlSi10Mg alloy in its as-built state comprises a cell structure with α-Al cell walls and eutectic Si.
X