Refine Your Search

Topic

Author

Search Results

Journal Article

Using Multiple Injection Strategies in Diesel Combustion: Potential to Improve Emissions, Noise and Fuel Economy Trade-Off in Low CR Engines

2008-04-14
2008-01-1329
In former high compression ratio Diesel engines a single injection was used to introduce the fuel into the combustion chamber. With actual direct injection engines which exhibit a compression ratio between 17:1 and 18:1 single or multiple early injections called “pilot injections” are also added in order to reduce the combustion noise. For after-treatment reasons a late injection during the expansion stroke named “post injection” may also be used in some operating conditions. Investigations have been conducted on lower compression ratio Diesel engine and in high EGR rate operating conditions to evaluate the benefits of multiple injection strategies to improve the trade off between engine emissions, noise and fuel economy.
Journal Article

Towards an Innovative Combination of Natural Gas and Liquid Fuel Injection in Spark Ignition Engines

2010-05-05
2010-01-1513
In order to address the CO₂ emissions issue and to diversify the energy for transportation, CNG (Compressed Natural Gas) is considered as one of the most promising alternative fuels given its high octane number. However, gaseous injection decreases volumetric efficiency, impacting directly the maximal torque through a reduction of the cylinder fill-up. To overcome this drawback, both independent natural gas and gasoline indirect injection systems with dedicated engine control were fitted on a RENAULT 2.0L turbocharged SI (Spark Ignition) engine and were adapted for simultaneous operation. The main objective of this innovative combination of gas and liquid fuel injections is to increase the volumetric efficiency without losing the high knocking resistance of methane.
Technical Paper

Strategies for the Control of Particulate Trap Regeneration

2000-03-06
2000-01-0472
The reduction of particulate emissions from Diesel engines is a key issue to meet future emission standards. Particulate traps represent an attractive solution to the problem of this source of pollution. However, they have the disadvantage of requiring periodic and safe regeneration to release exhaust back pressure and to recover filtration efficiency. Natural regeneration of the particulate filter may occur. Nevertheless, with light-duty vehicles and their low level of exhaust gas temperature, it may be necessary to facilitate or force the regeneration. The objective of this work is to give an overview of the possibilities offered by the engine management system to increase significantly exhaust gas temperatures. Thus, different engine tunes, through injection timing, boost pressure or EGR rate, may be sufficient to ensure safe regeneration of the trap.
Technical Paper

Six Degrees Crankshaft Individual Air Fuel Ratio Estimation of Diesel Engines for Cylinder Balancing Purpose

2006-04-03
2006-01-0013
In the context of modern engine control, one important variable is the individual Air Fuel Ratio (AFR) which is a good representation of the produced torque. It results from various inputs such as injected quantities, boost pressure, and the exhaust gas recirculation (EGR) rate. Further, for forthcoming HCCI engines and regeneration filters (Particulate filters, DeNOx), even slight AFR unbalance between the cylinders can have dramatic consequences and induce important noise, possible stall and higher emissions. Classically, in Spark Ignition engine, overall AFR is directly controlled with the injection system. In this approach, all cylinders share the same closed-loop input signal based on the single λ-sensor (normalized Fuel-Air Ratio measurement, it can be rewritten with AFR as they have the same injection set-point.
Technical Paper

Simulation of Urea-SCR Process Applied to Lean-burn SI Engines

2009-11-02
2009-01-2776
Lean-burn combustion in SI engines can significantly reduce fuel consumption but NOx reduction becomes challenging because classic three-way catalyst (TWC) is no more efficient. Urea-SCR is then an interesting alternative solution because of its high NOx conversion efficiency without any additional fuel consumption. The coupling between two SI lean-burn engines (stratified and homogeneous combustion) and a urea-SCR catalyst was simulated on the NEDC cycle. Simulation results showed that the SCR efficiency would comply with the limits required by future Euro 5/6 regulations. Associated urea solution consumptions were estimated thanks to a simplified model. Finally, a comparison with a Diesel application was also made. It showed that the required amount of reducing agent remained significantly higher for SI lean-burn engines than for Diesel engine.
Technical Paper

Quantifying Benefits of Dual Cam Phasers, Lean Mixture and EGR on the Operating Range and Fuel Economy of a PFI NVO CAI Engine

2010-04-12
2010-01-0844
Among the existing concepts that help to improve the efficiency of spark-ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions. This combustion concept is based on the auto-ignition of an air-fuel-mixture highly diluted with hot burnt gases to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. To minimize the costs of conversion of a standard spark-ignition engine into a CAI engine, the present study is restricted to a Port Fuel Injection engine with a cam-profile switching system and a cam phaser on both intake and exhaust sides. In a 4-stroke engine, a large amount of burnt gases can be trapped in the cylinder via early closure of the exhaust valves. This so-called Negative Valve Overlap (NVO) strategy has a key parameter to control the amount of trapped burnt gases and consequently the combustion: the exhaust valve-lift profile.
Technical Paper

Present Day Spark-Ignition Engine Pollutant Emissions: Proposed Model for Refinery Bases Impact

2001-09-24
2001-01-3529
Air quality improvement, especially in urban areas, is one of the major concerns for the coming years. For this reason, car manufacturers, equipment manufacturers and refiners have explored development issues to comply with increasingly severe anti-pollution requirements. In such a context, the identification of the most promising improvement options is essential. A research program, carried out by IFP (Institut Français du Pétrole), and supported by the French Ministry of Industry, IFP, PSA-Peugeot-Citroën, Renault and RVI (Renault Véhicules Industriels), has been built to study this point. It is based on a three years program with different steps focused on new engine technologies which will be available in the next 20 years in order to answer to more and more severe pollutant and CO2 emission regulations. This program is divided into three main parts: the first one for Diesel car engines, the second for Diesel truck engines and the third for spark ignition engines.
Journal Article

Optimization of a Euro 5 Vehicle Powered by an Ethanol Based Diesel Fuel

2010-05-05
2010-01-1520
Diversifying energy resources and reducing greenhouse gas emissions are key priorities in the forthcoming years for the automotive industry. Currently, among the different solutions, sustainable biofuels are considered as one of the most attractive answer to these issues. This paper deals with the vehicle application of an innovative diesel fuel formulation using Ethanol to tackle these future challenges. The main goal is to better understand the impact of using biofuel blends on engine behavior, reliability and pollutants emissions. This alternative oxygenated fuel reduces dramatically particulate matter (PM) emissions; this paves the way to improve the NOx/PM/CO₂ trade-off. Another major interest is to avoid adding a particulate filter in the exhaust line and to avoid modifying powertrain and vehicle hardware and therefore to minimize the overall cost to fulfill upcoming emission regulations.
Technical Paper

Modelling of a Turbocharged SI Engine with Variable Camshaft Timing for Engine Control Purposes

2006-10-16
2006-01-3264
In the whole engine development process, 0D/1D simulation has become a powerful tool, from conception to final calibration. Within the context of control strategy design, a turbocharged spark ignition (SI) engine with variable camshaft timing has been modelled on the AMESim platform. This paper presents the different models and the methodology used to design, calibrate and validate the simulator. The validated engine model is then used for engine control purposes related to downsizing concept. Indeed, the presented control strategy acts on the in-cylinder trapped mass, the in-cylinder burnt gas fraction and the air scavenging from the intake to the exhaust. Consequently, it permits to reduce not only the fuel consumption and pollutant emissions but also to improve the transient response of the turbocharger
Technical Paper

Modelling Turbocharged Spark-Ignition Engines: Towards Predictive Real Time Simulators

2009-04-20
2009-01-0675
Due to increasingly stringent regulations, reduction of pollutant emissions and consumption are currently two major goals of the car industry. One way to reach these objectives is to enhance the management of the engine in order to optimize the whole combustion process. This requires the development of complex control strategies for the air and the fuel paths, and for the combustion process. In this context, engine 0D modelling emerges as a pertinent tool for investigating and validating such strategies. Indeed, it represents a useful complement to test bench campaigns, on the condition that these 0D models are accurate enough and manage to run quite fast, eventually in real time. This paper presents the different steps of the design of a high frequency 0D simulator of a downsized turbocharged Port Fuel Injector (PFI) engine, compatible with real time constraints.
Technical Paper

Matching and Evaluating Methods for Euro 6 and Efficient Two-stage Turbocharging Diesel Engine

2010-04-12
2010-01-1229
While fuel efficiency has to be improved, future Diesel engine emission standards will further restrict vehicle emissions, particularly of nitrogen oxides. Increased in-cylinder filling is recognized as a key factor in addressing this issue, which calls for advanced design of air and exhaust gas recirculation circuits and high cooling capabilities. As one possible solution, this paper presents a 2-stage boosting breathing architecture, specially dedicated to improving the trade-off between emissions and fuel consumption instead of seeking to improve specific power on a large family vehicle equipped with a 1.6-liter Diesel engine. In order to do it, turbocharger matching was specifically optimized to minimize engine-out NOx emissions at part-load and consumption under common driving conditions. Engine speed and load were analyzed on the European driving cycle. The key operating points and associated upper boundary for NOx emission were identified.
Technical Paper

LIF Imaging of Auto-ignition and Combustion in a Direct Injection Diesel-fuelled HCCI Engine

2005-10-24
2005-01-3739
Planar laser-induced fluorescence (LIF) imaging of formaldehyde (CH2O) and OH has been performed to investigate the homogeneous charge, compression ignition (HCCI) combustion process inside the piston bowl of an optically-accessible, direct injection Diesel-fueled HCCI engine. In particular, the effects of charge dilution and the adoption of single and split injection strategies on the two-stage HCCI combustion have been studied. Results obtained show that the level of exhaust gas recirculation (EGR) significantly affects the pre-combustion or so called cool flame phase during which formaldehyde is detected. The cool flame phasing as indicated by the formation of this intermediate species is unaffected by the EGR level however, auto-ignition timing which marks the start of main combustion is inevitably advanced following a reduction in EGR and this ultimately determines the formaldehyde lifetime and consequently the degree of homogeneity attained.
Journal Article

Influence of the Valve-lift Strategy in a CAI™ Engine using Exhaust Gas Re-Breathing - Part 2: Optical Diagnostics and 3D CFD Results

2009-04-20
2009-01-0495
Among the existing concepts that help to improve the efficiency of spark ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions without major modifications of the engine design. The CAI™ concept is based on the auto-ignition of a fuel mixture highly diluted with burnt gases in order to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. Large amounts of burnt gases can be trapped in the cylinder by re-breathing them through the exhaust ports during the intake stroke. For that, a 2-step exhaust valve-lift profile is used. The interaction between the intake and exhaust flows during the intake stroke was identified as a key parameter to control the subsequent combustion in a CAI™ port fuel injected (PFI) engine.
Technical Paper

Influence of the Valve-lift Strategy in a CAI™ Engine using Exhaust Gas Re-Breathing - Part 1: Experimental Results and 0D Analysis

2009-04-20
2009-01-0299
Among the existing concepts that help to improve the efficiency of spark ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions without major modifications of the engine design. The CAI™ concept is based on the auto-ignition of a fuel mixture highly diluted with burnt gases in order to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. In a 4-stroke engine, large amounts of burnt gases can be trapped in the cylinder by re-breathing them through the exhaust ports during the intake stroke using a 2-step exhaust valve-lift profile. The interaction between the intake and exhaust flows during the intake stroke was identified as a key parameter to control the subsequent combustion in a CAI™ PFI engine. Consequently, the intake valve-lift profile as well as the exhaust re-opening profile can potentially be used as control parameters for this combustion mode.
Journal Article

Influence of the Local Mixture Characteristics on the Combustion Process in a CAI™ Engine

2008-06-23
2008-01-1671
Among the existing concepts to help improve the efficiency of spark ignition engines on low load operating points, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions at part load without major modifications of the engine design. The CAI™ concept is founded on the auto-ignition of a highly diluted gasoline-based mixture in order to reach high indicated efficiency and low pollutant emissions through a low temperature combustion. Previous research works have demonstrated that the valve strategy is an efficient way to control the CAI™ combustion mode. Not only the valve strategy has an impact on the amount of trapped burnt gases and their temperature, but also different valve strategies can lead to equivalent mean in-cylinder conditions but clearly differentiated combustion timing or location. This is thought to be the consequence of local mixture variations acting in turn on the chemical kinetics.
Technical Paper

Influence of Mixture Fluctuations on Combustion in Direct Injection Spark Ignition Engines Simulations

2001-03-05
2001-01-1226
Modelling small and large scale fluctuations of fuel distribution is of high interest for stratified direct injection spark ignition (DISI) engines. Homogeneous combustion models need to be extended or replaced in order to account for these fluctuations. They are presently neglected in most engine simulations. Effects of mean fuel/air equivalence ratio gradient have been recently included in previous homogeneous mixture approaches. To account for local fluctuations of mixture composition, the new model ECFM-Z has been developed on the basis of recent Direct Numerical Simulation results and Coherent Flame Surface modelling. The model has been implemented in a CFD code (KMB) The influence of mixture fraction is integrated in the Extended Coherent Flame Surface combustion model. The model is based on a conditional approach. Unburnt hydrocarbons produced by lean flame local extinctions are taken into account.
Technical Paper

Improving Emissions, Noise and Fuel Economy Trade-Off by using Multiple Injection Strategies in Diesel Low Temperature Combustion (LTC) Mode

2010-10-25
2010-01-2162
Latest emissions standards impose very low NOx and particle emissions that have led to new Diesel combustion operating conditions, such as low temperature combustion (LTC). The principle of LTC is based on enhancing air fuel mixing and reducing combustion temperature, reducing raw nitrogen oxides (NOx) and particle emissions. However, new difficulties have arisen. LTC is typically achieved through high dilution rates and low CR, resulting in increased auto-ignition delay that produces significant noise and deteriorates the combustion phasing. At the same time, lower combustion temperature and reduced oxygen concentration increases hydrocarbon (HC) and carbon oxide (CO) emissions, which can be problematic at low load. Therefore, if LTC is a promising solution to meet future emission regulations, it imposes a new emissions, fuel consumption and noise trade-off. For this, the injection strategy is the most direct mean of controlling the heat release profile and fuel air mixture.
Technical Paper

Improved Modelling of DI Diesel Engines Using Sub-grid Descriptions of Spray and Combustion

2003-03-03
2003-01-0008
Three dimensional CFD tools are commonly used to simulate spray injection and combustion in DI Diesel engines. However typical computations are strongly mesh dependent. By now it is not possible to enhance grid resolution since it would violate the underlying assumptions for the Lagrangian liquid phase description. Besides, a full Eulerian approach with an adapted mesh is not practical at the moment mainly because of prohibitive computer requirements. Based on the Lagrangian-Eulerian approach, new approaches have been developed: the Coupled Lagrangian-Eulerian (CLE) model for the two-way coupling between the spray and the air flow and a new combustion model (CFM3Z) which allows a description of the fuel-oxidizer sub-grid mixing. The previously introduced CLE model consists in retaining vapor and momentum along parcel trajectories as long as the mesh is insufficient to resolve the steep gradients created by the spray.
Journal Article

Impact of Fuel Properties on the Performances and Knock Behaviour of a Downsized Turbocharged DI SI Engine - Focus on Octane Numbers and Latent Heat of Vaporization

2009-04-20
2009-01-0324
Facing the CO2 emission reduction challenge, the combination of downsizing and turbocharging appears as one of the most promising solution for the development of high efficiency gasoline engines. In this context, as knock resistance is a major issue, limiting the performances of turbocharged downsized gasoline engines, fuel properties are more than ever key parameters to achieve high performances and low fuel consumption's levels. This paper presents a combustion study carried out into the GSM consortium of fuel quality effects on the performances of a downsized turbocharged Direct Injection SI engine. The formulation of two adapted fuel matrix has allowed to separate and evaluate the impacts of three major fuel properties: Research Octane Number (RON), Motor Octane Number (MON) and Latent Heat of Vaporization (LHV). Engine tests were performed on a single cylinder engine at steady state operating condition.
Technical Paper

High Pressure Diesel Spray and Combustion Visualization in a Transparent Model Diesel Engine

1999-10-25
1999-01-3648
A database of information concerning the spray development and pollutant formation in common-rail, direct-injection Diesel engine is constructed using a transparent model Diesel engine. Spray development is investigated using optical diagnostics: Mie scattering and Laser Induced Exciplex Fluorescence (LIEF) make possible qualitative visualization of liquid and vapor phases. The injection pressure/nozzle hole diameter is found to be the most important parameter (in the parameter range used for the study): it reduces the liquid penetration length and improves the mixing of vapor fuel. Direct imaging of combustion development shows the influence of different engine parameters on flame location. Comparison with measured vapor distributions shows the effect of thermal expansion on the vapor plume before any light from combustion is visible. Soot formation is investigated using Laser Induced Incandescence imaging.
X