Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Two-Dimensional In-Cylinder Soot Volume Fractions in Diesel Low Temperature Combustion Mode

2011-04-12
2011-01-1390
Soot Volume Fraction (SVF) measurements were performed in an IFP Energies nouvelles optical single cylinder Diesel engine operated in Low Temperature Combustion (LTC) conditions. The engine was equipped with a sapphire liner, a dedicated flat bowl piston and a six-hole common-rail high pressure injector. The piston design included four quartz windows allowing optical access into the bowl. The aim of this work was to study soot formation and oxidation during the LTC Diesel combustion process and to build a database providing soot formation and oxidation data under a set of engine conditions to help developing and testing Computational Fluid Dynamics (CFD) models. Two complementary optical diagnostic techniques were combined: Planar Laser Induced Incandescence (PLII) and Laser Extinction Method (LEM).
Technical Paper

Time-Resolved Fuel Film Thickness Measurement for Direct Injection SI Engines Using Refractive Index Matching

2011-04-12
2011-01-1215
The fuel film thickness resulting from fuel spray impingement on a flat transparent window was characterized in a high pressure high temperature cell for various thermodynamic conditions, injection pressures, injection durations, fuel types and injector technologies by Refractive Index Matching technique. The ambient conditions at injection timing were similar to that of a direct injection spark ignition engine at Top Dead Center, with the distance between the injector tip and the impinging surface set to 10 mm. The spray axis was set normal to the rough transparent window surface at ambient temperatures of 453 K, 573 K and 673 K, and ambient densities of 5.0 kg/m₃, 6.0 kg/m₃ and 6.5 kg/m₃. Injection pressures of 100 and 200 bar were investigated. Three injector technologies were studied: piezo-electric, multi-holes and swirl types. Two fuels, iso-octane and model gasoline, were tested.
Journal Article

Study of Soot Formation and Oxidation in the Engine Combustion Network (ECN), Spray A: Effects of Ambient Temperature and Oxygen Concentration

2013-04-08
2013-01-0901
Within the Engine Combustion Network (ECN) spray combustion research frame, simultaneous line-of-sight laser extinction measurements and laser-induced incandescence (LII) imaging were performed to derive the soot volume fraction (fv). Experiments are conducted at engine-relevant high-temperature and high-pressure conditions in a constant-volume pre-combustion type vessel. The target condition, called "Spray A," uses well-defined ambient (900 K, 60 bar, 22.8 kg/m₃, 15% oxygen) and injector conditions (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K). Extinction measurements are used to calibrate LII images for quantitative soot distribution measurements at cross sections intersecting the spray axis. LII images are taken after the start of injection where quasi-stationary combustion is already established.
Technical Paper

Study of ECN Injectors’ Behavior Repeatability with Focus on Aging Effect and Soot Fluctuations

2016-04-05
2016-01-0845
The Engine Combustion Network (ECN) has become a leading group concerning the experimental and computational analysis of engine combustion phenomena. In order to establish a coherent database for model validation, all the institutions participating in the experimental effort carry out tests at well-defined boundary conditions and using wellcharacterized hardware. In this framework, the reference Spray A injectors have produced different results even when tested in the same facility, highlighting that the nozzle employed and its fouling are important parameters to be accounted for. On the other hand, the number of the available Spray A injectors became an issue, due to the increasing number of research centers and simultaneous experiments taking place in the ECN community. The present work has a double aim: on the one hand, to seek for an appropriate methodology to “validate” new injectors for ECN experiments and to provide new hardware for the ECN community.
Technical Paper

Investigation of the Mixing Process and the Fuel Mass Concentration Fields for a Gasoline Direct-Injection Spray at ECN Spray G Conditions and Variants

2015-09-01
2015-01-1902
Within the Engine Combustion Network (ECN) research frame, the mixing process and the fuel mass concentration fields were investigated at spray G conditions and variants with optical diagnostics. Experiments were conducted in a high-temperature high-pressure constant-volume pre-combustion vessel. The target condition, called “Spray G”, which is representative of gasoline direct-injection engine conditions, uses well-defined ambient (573 K, 6 bar, 3.5 kg/m3, O2-free) and injector conditions (200 bar, eight-hole injector, 0.165 mm orifice diameter). Measurements were also conducted at 6 and 9 kg/m3 for temperatures of 700 and 800 K respectively. Two techniques were used to visualize the jet formation: p-difluorobenzene laser induced fluorescence (LIF) imaging and high-repetition-rate schlieren visualization. Images from both methods were compared in terms of jet penetration and size.
Technical Paper

Identifying the Driving Processes of Diesel Spray Injection through Mixture Fraction and Velocity Field Measurements at ECN Spray A

2020-04-14
2020-01-0831
Diesel spray mixture formation is investigated at target conditions using multiple diagnostics and laboratories. High-speed Particle Image Velocimetry (PIV) is used to measure the velocity field inside and outside the jet simultaneously with a new frame straddling synchronization scheme. The PIV measurements are carried out in the Engine Combustion Network Spray A target conditions, enabling direct comparisons with mixture fraction measurements previously performed in the same conditions, and forming a unique database at diesel conditions. A 1D spray model, based upon mass and momentum exchange between axial control volumes and near-Gaussian velocity and mixture fraction profiles is evaluated against the data.
Journal Article

Characterization of a Set of ECN Spray A Injectors: Nozzle to Nozzle Variations and Effect on Spray Characteristics

2013-09-08
2013-24-0037
The Engine Combustion Network (ECN) is becoming a leading group concerning the experimental and computational analysis of Engine combustion. In order to establish a coherent database for model validation, all the institutions participating to the experimental effort carry out experiments at well-defined standard conditions (in particular at Spray A conditions: 22.8kg/m3, 900K, 0% and 15% O2) and with Diesel injectors having the same specifications. Due to the rising number of ECN participants and also to unavoidable damages, additional injectors are required. This raises the question of injector's characteristics reproducibility and of the appropriate method to introduce such new injectors in the ECN network. In order to investigate this issue, a set of 8 new injectors with identical nominal Spray A specification were purchased and 4 of them were characterized using ECN standard diagnostics.
Journal Article

Air Entrainment in Diesel-Like Gas Jet by Simultaneous Flow Velocity and Fuel Concentration Measurements, Comparison of Free and Wall Impinging Jet Configurations

2011-08-30
2011-01-1828
The air entrainment process of diesel-like gas jet was studied by simultaneous measurements of concentration and velocity fields. A high pressure gas jet was used to simulate diesel injection conditions. The injection mass flow rate was similar to that of typical diesel injection. The experiments were performed in a high pressure vessel at typical ambient gas density of diesel engine during spray injection. The ambient gas density was varied from 25 to 30 kg/m₃ and three nozzle diameters, 0.2, 0.35 and 0.5 mm were used. Both free and wall-impinging jet configurations were investigated by combining Laser-Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV) to obtain simultaneous planar measurements of concentration and velocity. Fuel concentration fields were used to define the edges of the jet and allow an accurate determination of the air entrainment rate both in free and wall-impinging configurations.
X