Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Analysis of In-Cylinder Flow and Cycle-to-Cycle Flow Variations in a Small Spark-Ignition Engine at Different Throttle Openings

2020-04-14
2020-01-0793
Flow variations from one cycle to the next significantly influence the mixture formation and combustion processes in engines. Therefore, it is important to understand the fluid motion and its cycle-to-cycle variations (CCVs) inside the engine cylinder. Researchers have generally investigated the cycle-to-cycle flow variations in moderate- to large-sized engines. In the present work, we have performed the flow measurement and analysis in a small spark-ignition engine. Experiments are conducted in an optically accessible, single-cylinder, port-fuel-injection engine with displacement volume of 110 cm3 at different throttle openings (i.e. 50% and WOT) using particle image velocimetry. Images are captured at different crank angle positions during both intake and compression strokes over a tumble measurement plane, bisecting the intake and exhaust valves and passing through the cylinder axis.
Technical Paper

A Computational Study on the Effect of Injector Location on the Performance of a Small Spark-Ignition Engine Modified to Operate under the Direct-Injection Mode

2020-04-14
2020-01-0286
In a direct-injection (DI) engine, charge motion and mixture preparation are among the most important factors deciding the performance and emissions. This work was focused on studying the effect of injector positioning on fuel-air mixture preparation and fuel impingement on in-cylinder surfaces during the homogeneous mode of operation in a naturally aspirated, small bore, 0.2 l, light-duty, air-cooled, four-stroke, spark-ignition engine modified to operate under the DI mode. A commercially available, six-hole, solenoid-operated injector was used. Two injector locations were identified based on the availability of the space on the cylinder head. One location yielded the spray-guided (SG) configuration, with one of the spray plumes targeted towards the spark plug. In the second location, the spray plumes were targeted towards the piston top in a wall-guided (WG) configuration so as to minimize the impingement of fuel on the liner.
X