Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Transient Emission Characteristics of a Light Duty Commercial Vehicle Powered by a Low Compression Ratio Diesel Engine

2021-09-21
2021-01-1181
Adopting a low compression ratio (LCR) is a viable approach to meet the stringent emission regulations since it can simultaneously reduce the oxides of nitrogen (NOx) and particulate matter (PM) emissions. However, significant shortcomings with the LCR approach include higher unburned hydrocarbon (HC) and carbon monoxide (CO) emissions and fuel economy penalties. Further, poor combustion stability of LCR engines at cold ambient and part load conditions may worsen the transient emission characteristics, which are least explored in the literature. In the present work, the effects of implementing the low compression ratio (LCR) approach in a mass-production light-duty vehicle powered by a single-cylinder diesel engine are investigated with a major focus on transient emission characteristics.
Technical Paper

Studies on Dual Fuel Operation of Karanja Oil and Its Bio-Diesel with LPG as the Inducted Fuel

2006-04-03
2006-01-0237
A diesel engine was operated with karanja oil, bio-diesel obtained from karanja oil (BDK) and diesel as pilot fuels while LPG was used as primary fuel. LPG supply was varied from zero to the maximum value that the engine could tolerate. The engine output was kept at different constant levels of 25%, 50%, 75% and 100% of full load. The thermal efficiency improved at high loads. Smoke level was reduced drastically at all loads. CO and HC levels were reduced at full load. There was a slight increase in the NO level. Combustion parameters indicated an increase in the ignition delay. Peak pressure and rate of pressure rise were not unfavorably affected. There was an increase in the peak heat release rate with LPG induction. The amount of LPG that could be tolerated with out knock at full load was 49%, 53% and 61% on energy basis with karanja oil, BDK and diesel as pilots.
Technical Paper

Stable Biodiesel-Water Emulsions with a Novel Surfactant to Improve Performance and Reduce Exhaust Emissions of a Light-duty Diesel Engine

2022-08-30
2022-01-1090
Emulsification of biodiesel with water aids in reducing oxides of nitrogen (NOx) and smoke emissions simultaneously whilst improving the engine performance. However, widespread commercial applications of biodiesel-water emulsions require cost-effective surfactants that result in stable emulsions to avoid the corrosive effects of water at high temperatures prevailing in the engine combustion systems. The current investigation explored the effect of adding water to biodiesel at 6 and 12% by weight. A novel, cost-effective surfactant Polyglycerol Polyricinoleate (PGPR), was used to stabilize the emulsions. A magnetic stirrer with a heating facility was utilized to prepare biodiesel-water emulsions that were stable for over five months. The experiments were carried out on a light-duty diesel engine at a constant rated speed and varying load conditions. The results obtained with the emulsions were compared with neat biodiesel as the reference fuel.
Technical Paper

Parametric Investigations on Premixed Charged Compression Ignition in a Small-Bore Light Duty Diesel Engine

2020-11-30
2020-32-2300
Achieving stable combustion without misfire and knocking is challenging in premixed charge compression ignition (PCCI) especially in small bore, air cooled diesel engines owing to lower power output and inefficient cooling system. In the present study, a single cylinder, air cooled diesel engine used for agricultural water pumping applications is modified to run in PCCI mode by replacing an existing mechanical fuel injection system with a flexible common rail direct injection system. An advanced start of fuel injection (SOI) and exhaust gas recirculation (EGR) are required to achieve PCCI in the test engine. Parametric investigations on SOI, EGR and fuel injection pressure are carried out to identify optimum parameters for achieving maximum brake thermal efficiency. An SOI sweep of 12 to 50 deg. CA bTDC is done and for each SOI, EGR is varied from 0 to 50% to identify maximum efficiency points. It was found that EGR helps in extending the load range from 20 to 40% of rated load.
Technical Paper

Parametric Investigation of Various Factors Affecting Engine Performance and Emissions in a Homogeneous Charge with Direct Injection Strategy at High Load: A CFD Approach

2022-08-30
2022-01-1048
Over the years, much progress has been made in automotive vehicle technology to achieve high efficiency and clean combustion. Reactivity controlled compression ignition (RCCI) is one of the most widely studied high-efficiency, clean combustion strategies. However, complex dual-fuel injection systems and associated controls, high unburned hydrocarbon (UHC), and carbon monoxide (CO) emissions limit RCCI use in practical applications. Recently, single fuel RCCI strategies are gaining more attention as the above shortcomings are effectively addressed. Homogeneous charge with direct injection (HCDI) is a single fuel RCCI strategy that results in high thermal efficiency and lower UHC and CO emissions. In HCDI, the port-injected diesel fuel vapour and air are inducted during the intake stroke and ignited with direct-injected diesel fuel near the end of the compression stroke. However, high oxides of nitrogen (NOx) make HCDI less viable for practical applications.
Technical Paper

Numerical Investigations on Split Injection Strategies to Reduce CO and Soot Emissions of a Light-Duty Small-Bore Diesel Engine Operated in NADI-PCCI Mode

2022-03-29
2022-01-0458
Premixed Charge Compression Ignition (PCCI) is a promising LTC strategy to reduce NOx and soot emissions without relying on after-treatment devices. One major drawback of PCCI is high HC and CO emissions resulting from fuel-wall impingement due to early injection of diesel. Narrow-angle direct injection (NADI) helps reduce the wall wetting of fuel. But it is effective only at lower loads. At mid and higher loads, it increases soot and CO emissions in small-bore engines due to the formation of fuel-rich pockets in the piston bowl region. This problem is addressed using a split injection strategy in the present work. A 3-D CFD model is developed and validated with experimental data at two load conditions. Simulations are performed using CONVERGE CFD software. Split injection strategies are explored using wide (148 deg) and narrow (88 deg) spray included angles.
Technical Paper

Investigations on Dual Fuel Reactivity Controlled Compression Ignition Engine using Alternative Fuels Produced from Waste Resources

2022-08-30
2022-01-1095
Currently, alternative fuels produced from waste resources are gaining much attention to replace depleting fossil fuels. The disposal of waste plastic poses severe environmental problems across the globe. The energy embodied in waste plastics can be converted into liquid fuel by pyrolysis. The present work explores the possibility of utilizing waste plastic oil (WPO) produced from municipal plastic wastes and waste cooking oil (WCO) biodiesel produced from used cooking oil in a dual fuel reactivity-controlled compression ignition (RCCI) mode. A single-cylinder light-duty diesel engine used for agricultural water pumping applications is modified to run in RCCI through suitable intake and fuel injection systems modifications. Alternative fuel blends, viz. WPO and WCO biodiesel with 20 vol. % in gasoline and diesel is used as a port and direct-injected fuels in RCCI. The premixed ratio and direct-injected fuel timings are optimized to achieve maximum thermal efficiency.
Technical Paper

Influence of Injection Parameters on the Performance and Emissions of a Direct Injection Two Stroke SI Engine

2016-04-05
2016-01-1052
Direct injection of fuel has been seen as a potential method to reduce fuel short circuiting in two stroke engines. However, most work has been on low pressure injection. In this work, which employed high pressure direct injection in a small two stroke engine (2S-GDI), a detailed study of injection parameters affecting performance and combustion has been presented based on experiments for evaluating its potential. Influences of injection pressure (IP), injection timing (end of injection - EOI) and location of the spark plug at different operating conditions in a 199.3 cm3 automotive two stroke engine using a real time open engine controller were studied. Experiments were conducted at different throttle positions and equivalence ratios at a speed of 3000 rpm with various sets of injection parameters and spark plug locations. The same engine was also run in the manifold injection (2S-MI) mode under similar conditions for comparison.
Technical Paper

Fuel Injection Strategies for Improving Performance and Reducing Emissions of a Low Compression Ratio Diesel Engine

2021-09-21
2021-01-1166
The present work investigates the effects of lowering the compression ratio (LCR) from 18:1 to 14:1 and optimizing the fuel injection parameters across the operating range of a mass production light-duty diesel engine. The results were quantified for a regulatory Indian drive cycle using a one-dimensional simulation tool. The results show that the LCR approach can simultaneously reduce the oxides of nitrogen (NOx) and soot emissions by 28% and 64%, respectively. However, the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions increased significantly by 305% and 119%, respectively, with a 4.5% penalty in brake specific fuel consumption (BSFC). Hence, optimization of fuel injection parameters specific to LCR operation was attempted. It was evident that advancing the main injection timing and reducing the injection pressure at low-load operating points can significantly help to reduce BSFC, HC and CO emissions with a slight increase in the NOx emissions.
Technical Paper

Experimental Investigations on the Effects of Multiple Injections in Reactivity-Controlled Compression Ignition in a Light-Duty Engine Operated with Gasoline/Diesel

2020-09-25
2020-01-5072
Reactivity-Controlled Compression Ignition (RCCI) is a promising low-temperature combustion (LTC) strategy to mitigate the oxides of nitrogen (NOx) and soot emissions. However, the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are much higher in RCCI compared to the conventional diesel combustion (CDC). In this present work, multiple injections of the direct-injected (DI) diesel fuel are explored as a potential method to reduce the high HC and CO emissions. Although significant research works have been done in the past on RCCI combustion in different engine types, investigations on small air-cooled diesel engines are very limited. In the present work, a production light-duty air-cooled diesel engine is modified to run in RCCI, with diesel as the high-reactivity fuel and gasoline as the low-reactivity fuel. Before modifications, the engine is run in CDC with production settings. In RCCI, experiments are initially performed with single-pulse DI.
Technical Paper

Experimental Investigation on Reactivity Controlled Compression Ignition with Oxygenated Alternative Fuel Blends to Reduce Unburned Hydrocarbon Emissions

2021-09-21
2021-01-1203
For controlling oxides of nitrogen (NOx) and particular matter (PM) emissions from diesel engines, various fuel and combustion mode modification strategies are investigated in the past. Low temperature combustion (LTC) is an alternative combustion strategy that reduces NOx and PM emissions through premixed lean combustion. Dual fuel reactivity-controlled compression ignition (RCCI) is a promising LTC strategy with better control over the start and end of combustion because of reactivity and equivalence ratio stratification. However, the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are significantly higher in RCCI, especially at part-load conditions. The present work intends to address this shortcoming by utilizing oxygenated alternative fuels. Considering the limited availability and higher cost, replacing conventional fuels completely with alternative fuels is not feasible.
Technical Paper

Computer Simulation of Gasoline-Direct-Injected (Gdi) Extended Expansion Engine

2005-01-19
2005-26-057
This paper deals mainly with computer simulation of processes of Gasoline Direct Injection (GDI) associated with Extended Expansion Engine (EEE) concept applied to a four-stroke, single-cylinder SI engine. In the case of standard SI engines, part-load brake thermal efficiencies are low due to higher pumping losses. The pumping losses can be reduced by operating the engine always at full throttle as done in extended expansion engine. In extended expansion engine, higher Geometric Expansion Ratio (GER) compared to Effective Compression Ratio (ECR) is responsible for better performance at part loads. Usually, in this engine, by delaying inlet valve closure timing along with reduced clearance volume, extended expansion is achieved. Experimentally many researchers have proved that variable valve timing and variable compression ratio techniques adopted in SI engines, improves the part- load performance greatly.
Technical Paper

Boost Port Injection of LPG in a Two - Stroke SI Engine for Reduction in HC Emissions

2013-04-08
2013-01-0584
Short-circuiting of the fuel air mixture during scavenging is the main reason for high fuel consumption and hydrocarbon (HC) emissions in two-stroke SI engines. Though direct injection of the fuel after the closure of ports has advantages, it is costly and complex. In this work, in a 2S-SI, single cylinder, automotive engine, LPG (liquefied Petroleum Gas) was injected through the boost port to reduce short-circuiting losses. A fuel injector was located on one of the boost ports and the air alone was fed through the other transfer and boost ports for scavenging. Experiments were done at 25% and 70% throttle openings with different injection timings and optimal spark timing at 3000 rpm. Boost port injection (BPI) of LPG reduced HC emissions at all conditions as compared to LPG-MI (Manifold Injection). Particularly significant reductions were seen at high throttle conditions and rich mixtures. HC reductions with BPI were 19% and 25% as compared to LPG-MI and gasoline-MI respectively.
X