Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Use of a Laboratory Scale Test to Study Internal Diesel Injector Deposits

2016-10-17
2016-01-2247
Internal Diesel Injector Deposits (IDID) in compression ignition engines have been widely studied in the past few years. Published results indicate that commonly observed IDID chemistries may be replicated using full-scale engine tests and subsequently fuel injection equipment (FIE) operated on non-fired electric motor driven test stands. Such processes are costly, complex and by nature can be difficult to repeat. The next logical simplification is to replicate IDID formation using laboratory-scale apparatus that recreate the appropriate chemical reaction process under well controlled steady state conditions. This approach is made more feasible by the fact that IDID, unlike nozzle hole coking, are not directly exposed to gasses involved in the combustion process. The present study uses an instrument designed to measure thermal oxidation stability of aviation turbine fuels to successfully replicate the deposit chemistries observed in full-scale FIE.
Technical Paper

Understanding the Challenges Associated with Soot-in-Oil from Diesel Engines: A Review Paper

2021-04-06
2021-01-0568
The major drivers in the development of the latest generation of engines are environmental. For diesel engines, mitigating the effects of soot contamination remains a significant factor in meeting these challenges. There is general consensus of soot impacting oil performance. Considerable efforts have been made towards a greater understanding of soot-lubricant interaction and its effects on engine performance. However, with evolution of engine designs resulting in changes to soot composition/ properties, the mechanisms of soot-lubricant interaction in the internal combustion engine continue to evolve. A variety of mechanisms have been proposed to explain soot-induced wear in engine components. Furthermore, wear is not the only topic among researchers. Studies have shown that soot contributes to oil degradation by increasing its viscosity leading to pumpability and lubricant breakdown issues.
Journal Article

The Effect of Low Viscosity Oil on the Wear, Friction and Fuel Consumption of a Heavy Duty Truck Engine

2013-04-08
2013-01-0331
This paper describes the results of a series of tests on a heavy-duty truck diesel engine using conventional and low viscosity lubricants. The objectives were to explore the impact of reducing lubricant viscosity on wear, friction and fuel consumption. The radiotracing Thin Layer Activation method was used to make on-line measurements of wear at the cylinder liner, top piston ring, connecting rod small end bush and intake cam lobe. The engine was operated under a wide range of conditions (load, speed and temperature) and with lubricants of several different viscosity grades. Results indicate the relationship between lubricant viscosity and wear at four critical locations. Wear at other locations was assessed by analysis of wear metals and post test inspection. The fuel consumption was then measured on the same engine with the same lubricants. Results indicate the relationship between oil viscosity and fuel consumption under a wide range of operating conditions.
Technical Paper

Measuring Fuel Efficiency in Various Driving Cycles: How to Get Maximum Fuel Economy Improvement from the Lubricant

2015-09-01
2015-01-2042
Increasing vehicle efficiency has been one of the key drivers of the automotive industry worldwide due to new government emission legislations and rising fuel costs. While original equipment manufacturers (OEMs) are responding with innovative hardware designs for new models, lubricant companies are developing additive solutions to reduce frictional losses in the engine thereby increasing fuel economy of both new and existing vehicles. Fuel efficiency of the vehicle can be measured in a variety of driving cycles, including the New European Driving Cycle (NEDC), Japanese JC-08, and FTP-75 (Federal Test Procedure). The type of vehicle used in fuel economy evaluation in the same cycle plays a significant role. Fuel consumption rates for the same vehicle measured in these driving cycles vary due to the differences in the cycles. Thus, to assess the effect of the lubricant on fuel efficiency in various cycles, the fuel consumption is measured relative to a reference oil.
Technical Paper

Laboratory Test for Distributor Type Diesel Fuel Pumps - CEC PF032 Code of Practice

2004-06-08
2004-01-2016
The Co-ordinating European Council (CEC) for the development of performance tests for transportation fuels, lubricants and other fluids has set up a working group to develop a laboratory pump rig test able to discriminate between diesel fuels of different lubricity performance. This test was expected to correlate with the performance of fuels and Fuel Injection Equipment (FIE) in the field, therefore providing a way to avoid costly field trials. This test could also enhance the understanding of the results from the High Frequency Reciprocating Rig (HFRR) method. The CEC working group was supported by representatives of Oil Companies, Test Houses, Additive Companies and all the European FIE Manufacturers. After a thorough investigative phase, the group focused on a Bosch VE 4 distributor-type pump run according to the Bosch WP2 test cycle. This choice was also widely accepted throughout the industry.
Technical Paper

Investigating the morphology and nanostructure of carbon black dispersed in lubricant oils and their impact on chain wear as a proxy of marginally lubricated components

2023-09-29
2023-32-0116
Excessive soot concentration in the lubricant promotes excessive wear on timing chains. The relationship between chain wear and soot concentration, morphology, and nanostructure, however, remains inconclusive. In this work, a chain wear test rig is used to motor a 1.3 L diesel engine following the speed profile of a Worldwide Harmonized Light Vehicle Test Cycle (WLTC). The lubricant oil was loaded with 3% carbon black of known morphology. The chain length is measured at regular intervals of 20 WLTC cycles (i.e. 10 hours) and the wear is expressed as a percentage of total elongation. Oil samples were collected and analysed with the same frequency as the chain measurements. Carbon black morphology and nanostructure were investigated using Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM).
Technical Paper

Impact of Diesel Fuel Additives on Vehicle Performance

2008-06-23
2008-01-1600
A variety of additives are used in automotive diesel fuel to meet specification limits and to enhance quality. For example, lubricity additives and cold flow improvers are used to meet specifications whilst diesel detergents further enhance the quality of the fuel. Recently, several premium fuels that use high levels of diesel detergents and, in some cases, cetane improver have been introduced in the market place. The purpose of the work carried out was to assess the potential impact of these additives on vehicle performance. In order to do this, a fuel free of any additive was treated with very high levels of all the diesel fuel additives currently used to meet specification limits and to enhance diesel fuel performance. A common rail vehicle using an advanced common rail system was then driven in a controlled manner for 50.000 km. Emissions and driveability tests took place at 0km to provide baseline data.
Technical Paper

ISO Paraffinic Diesel Fuel Lubricity Study

2022-10-03
2022-01-5073
An ad hoc working group (WG) “AG1” was formed by ISO/TC22/SC34 [1] to conduct the necessary research to mitigate concerns with the prediction of lubricity in paraffinic diesel fuel (e.g., renewable diesel [RD] and gas-to-liquids [GTL] fuel), using ISO 12156-1 [2] high-frequency reciprocating rig (HFRR). Several field complaints had been raised regarding anomalies with HFRR readings of RDs not accurately predicting the lubricity of the fuel. Specific reports include readings below the 460 μm wear scar diameter (WSD) limit may still allow excessive scuffing and wear. Generally, for all fuels, there is a deterioration in precision (measurement error) in the 350 μm-500 μm range. The Paraffinic Diesel Fuel Lubricity AG1 was given the mandate to execute its work tasks comprising the below-listed deliverables while embracing the concept of continuous improvement.
Journal Article

FAME Filterability: Understanding and Solutions

2012-09-10
2012-01-1589
The introduction of fatty acid methyl ester (FAME) into the diesel pool has led to an increase in the incidence of diesel fuel filter blocking. In contrast to conventional diesel, filter blocking events can occur above a fuel's Cloud Point (CP). It has been shown that this phenomenon is due to trace levels of impurities carried over from the original oil source into the final fuel. The two species identified as being the main cause of the filtration problems are saturated monoglycerides (sMG) and sterol glucosides (SG). Reported in this paper is an extensive study completed to understand the impact that these impurities have on the filterability of FAME and FAME containing fuels. This has been investigated using laboratory based filterability tests that incorporate a specific cold soak and the critical contaminant levels causing failure have been determined.
Technical Paper

Developing a Precision and Severity Monitoring System for CEC Performance Tests

2004-06-08
2004-01-1892
The Coordinating European Council, CEC, develops performance tests for the motor, oil, petroleum, additive and allied industries. In recent years, CEC has moved away from using round robin programmes (RRP's) for monitoring the precision and severity of test methods in favour of regular referencing within a test monitoring system (TMS). In a TMS, a reference sample of known performance, determined by cross-laboratory testing, is tested at regular intervals at each laboratory. The results are plotted on control charts and determine whether the installation is and continues to be fit to evaluate products. Results from all laboratories are collated and combined to monitor the general health of the test. The TMS approach offers considerable benefits in terms of detecting test problems and improving test quality. However, the effort required in collating data for statistical analysis is much greater, and there are technical difficulties in determining precision from TMS data.
X