Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Measuring Fuel Efficiency in Various Driving Cycles: How to Get Maximum Fuel Economy Improvement from the Lubricant

2015-09-01
2015-01-2042
Increasing vehicle efficiency has been one of the key drivers of the automotive industry worldwide due to new government emission legislations and rising fuel costs. While original equipment manufacturers (OEMs) are responding with innovative hardware designs for new models, lubricant companies are developing additive solutions to reduce frictional losses in the engine thereby increasing fuel economy of both new and existing vehicles. Fuel efficiency of the vehicle can be measured in a variety of driving cycles, including the New European Driving Cycle (NEDC), Japanese JC-08, and FTP-75 (Federal Test Procedure). The type of vehicle used in fuel economy evaluation in the same cycle plays a significant role. Fuel consumption rates for the same vehicle measured in these driving cycles vary due to the differences in the cycles. Thus, to assess the effect of the lubricant on fuel efficiency in various cycles, the fuel consumption is measured relative to a reference oil.
Technical Paper

Laboratory Test for Distributor Type Diesel Fuel Pumps - CEC PF032 Code of Practice

2004-06-08
2004-01-2016
The Co-ordinating European Council (CEC) for the development of performance tests for transportation fuels, lubricants and other fluids has set up a working group to develop a laboratory pump rig test able to discriminate between diesel fuels of different lubricity performance. This test was expected to correlate with the performance of fuels and Fuel Injection Equipment (FIE) in the field, therefore providing a way to avoid costly field trials. This test could also enhance the understanding of the results from the High Frequency Reciprocating Rig (HFRR) method. The CEC working group was supported by representatives of Oil Companies, Test Houses, Additive Companies and all the European FIE Manufacturers. After a thorough investigative phase, the group focused on a Bosch VE 4 distributor-type pump run according to the Bosch WP2 test cycle. This choice was also widely accepted throughout the industry.
Technical Paper

ISO Paraffinic Diesel Fuel Lubricity Study

2022-10-03
2022-01-5073
An ad hoc working group (WG) “AG1” was formed by ISO/TC22/SC34 [1] to conduct the necessary research to mitigate concerns with the prediction of lubricity in paraffinic diesel fuel (e.g., renewable diesel [RD] and gas-to-liquids [GTL] fuel), using ISO 12156-1 [2] high-frequency reciprocating rig (HFRR). Several field complaints had been raised regarding anomalies with HFRR readings of RDs not accurately predicting the lubricity of the fuel. Specific reports include readings below the 460 μm wear scar diameter (WSD) limit may still allow excessive scuffing and wear. Generally, for all fuels, there is a deterioration in precision (measurement error) in the 350 μm-500 μm range. The Paraffinic Diesel Fuel Lubricity AG1 was given the mandate to execute its work tasks comprising the below-listed deliverables while embracing the concept of continuous improvement.
Technical Paper

Developing a Precision and Severity Monitoring System for CEC Performance Tests

2004-06-08
2004-01-1892
The Coordinating European Council, CEC, develops performance tests for the motor, oil, petroleum, additive and allied industries. In recent years, CEC has moved away from using round robin programmes (RRP's) for monitoring the precision and severity of test methods in favour of regular referencing within a test monitoring system (TMS). In a TMS, a reference sample of known performance, determined by cross-laboratory testing, is tested at regular intervals at each laboratory. The results are plotted on control charts and determine whether the installation is and continues to be fit to evaluate products. Results from all laboratories are collated and combined to monitor the general health of the test. The TMS approach offers considerable benefits in terms of detecting test problems and improving test quality. However, the effort required in collating data for statistical analysis is much greater, and there are technical difficulties in determining precision from TMS data.
X