Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Understanding the Challenges Associated with Soot-in-Oil from Diesel Engines: A Review Paper

2021-04-06
2021-01-0568
The major drivers in the development of the latest generation of engines are environmental. For diesel engines, mitigating the effects of soot contamination remains a significant factor in meeting these challenges. There is general consensus of soot impacting oil performance. Considerable efforts have been made towards a greater understanding of soot-lubricant interaction and its effects on engine performance. However, with evolution of engine designs resulting in changes to soot composition/ properties, the mechanisms of soot-lubricant interaction in the internal combustion engine continue to evolve. A variety of mechanisms have been proposed to explain soot-induced wear in engine components. Furthermore, wear is not the only topic among researchers. Studies have shown that soot contributes to oil degradation by increasing its viscosity leading to pumpability and lubricant breakdown issues.
Technical Paper

Understanding Soot Mediated Oil Thickening: Rotational Rheology Techniques to Determine Viscosity and Soot Structure in Peugeot XUD-11 BTE Drain Oils

2001-05-07
2001-01-1967
The Association des Constructeurs Européen d'Automobiles (ACEA) light duty diesel engine specifications requires a kinematic viscosity measurement technique for Peugeot XUD-11 BTE drain oils. This viscosity measurement is used to define the medium temperature dispersivity of soot in the drain oil.(1) This paper discusses the use of rotational rheology methods to measure the Newtonian character of XUD-11 drain oils. The calculation of the rate index using the Hershel Bulkley model indicates the level of non-Newtonian behavior of the drain oil and directly reflects the level of soot dispersion or agglomeration. This study shows that the more non-Newtonian the drain oil the greater the difference between kinematic and rotational viscosity measurements Oscillation (dynamic) rheological techniques are used to characterize build up of soot structure.
Technical Paper

Understanding Soot Mediated Oil Thickening Part 6: Base Oil Effects

1998-10-19
982665
One of the key functions of lubricating oil additives in diesel engines is to control oil thickening caused by soot accumulation. Over the last several years, it has become apparent that the composition of the base oil used within the lubricant plays an extremely important role in the oil thickening phenomenon. In particular, oil thickening observed in the Mack T-8 test is significantly affected by the aromatic content of the base oil. We have found that the Mack T-8 thickening phenomenon is associated with high electrical activity, i.e., engine drain oils which exhibit high levels of viscosity increase show significantly higher conductivities. These findings suggest that electrical interactions are involved in soot-induced oil thickening.
Journal Article

Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing

2014-04-01
2014-01-1185
The paper discusses the concept, design and final results from the ‘Ultra Boost for Economy’ collaborative project, which was part-funded by the Technology Strategy Board, the UK's innovation agency. The project comprised industry- and academia-wide expertise to demonstrate that it is possible to reduce engine capacity by 60% and still achieve the torque curve of a modern, large-capacity naturally-aspirated engine, while encompassing the attributes necessary to employ such a concept in premium vehicles. In addition to achieving the torque curve of the Jaguar Land Rover naturally-aspirated 5.0 litre V8 engine (which included generating 25 bar BMEP at 1000 rpm), the main project target was to show that such a downsized engine could, in itself, provide a major proportion of a route towards a 35% reduction in vehicle tailpipe CO2 on the New European Drive Cycle, together with some vehicle-based modifications and the assumption of stop-start technology being used instead of hybridization.
Technical Paper

The Use of Life Cycle Assessment with Crankcase Lubricants to Yield Maximum Environmental Benefit – Case Study of Residual Chlorine in Lubricant

2008-10-06
2008-01-2376
Life Cycle Assessment (LCA) is a methodology used to determine quantitatively the environmental impacts of a range of options. The environmental community has used LCA to study all of the impacts of a product over its life cycle. This analysis can help to prevent instances where a greater degree of environmental harm results when changes are made to products based on consideration of impacts in only part of the life cycle. This study applies the methodology to engine lubricants, and in particular chlorine limits in engine lubricant specifications. Concern that chlorine in lubricants might contribute to emissions from vehicle exhausts of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF), collectively called PCDD/F, led to the introduction of chlorine limits in lubricant specifications. No direct evidence was available linking chlorine in lubricants to PCDD/F formation, but precautionary principles were used to set lubricant chlorine limits.
Technical Paper

The Role of Engine Oil Formulations on Fluid Diagnostics

2002-10-21
2002-01-2677
Historically, vehicle fluid condition has been monitored by measuring miles driven or hours operated. Many current vehicles have more sophisticated monitoring methods that use additional variables such as fuel consumption, engine temperature and engine revolutions to predict fluid condition. None of these monitoring means, however, actually measures a fluid property to determine condition, and that is about to change. New sensors and diagnostic systems are being developed that allow real time measurement of some lubricant physical and/or chemical properties and interpret the results in order to recommend oil change intervals and maximize performance. Many of these new sensors use electrochemical or acoustic wave technologies. This paper examines the use of these two technologies to determine engine oil condition and focuses on the effects of lubricant chemistry on interpreting the results.
Technical Paper

The M111 Engine CCD and Emissions Test: Is it Relevant to Real-World Vehicle Data?

2002-05-06
2002-01-1642
A European test procedure for evaluating engine deposits, using the Mercedes Benz M111 bench engine, has already been approved for inlet valve deposits (IVD) and is under development for combustion chamber deposits (CCD) by the Co-ordinating European Council (CEC). This paper describes CCD effects on emissions using a slightly modified version of this engine test procedure and compares it with CCD/emissions data from road vehicles. The engine used was a modern four valve, four cylinder, 2.0 litre passenger car unit and the bench test procedure used extended the operating time from the specified 60 hours to 180 hours. The road vehicle trial used two Mercedes Benz C200 passenger cars fitted with the M111 engine and two Ford Mondeo 2.0 litre passenger cars. Data was collected up to 11200km, approximately equivalent to 180 hours operation of the bench engine.
Technical Paper

The Impact of Additive Chemistry and Lubricant Rheology on Wear in Heavy Duty Diesel Engines

1999-10-25
1999-01-3575
Increasingly severe emission legislation for heavy duty diesel engines has forced engine builders to modify their engine designs dramatically over the last few years. Some of the design modifications, such as the retardation of injection timing, resulted in higher levels of soot contamination of the crankcase lubricant. Consequently, higher wear levels were observed in the engines as a result of soot abrasion. Despite the more severe environment, there is a demand for increased engine life, which necessitates the search for ways to reduce wear. This paper describes the results of several wear studies in diesel engines. Valve train wear in engines producing high soot levels in the crankcase oil appears to be a function of soot dispersion and anti-wear film formation. Reducing the abrasiveness of the soot agglomerates and increasing the anti-wear film formation rate both result in lower valve train wear levels.
Journal Article

The Effect of Low Viscosity Oil on the Wear, Friction and Fuel Consumption of a Heavy Duty Truck Engine

2013-04-08
2013-01-0331
This paper describes the results of a series of tests on a heavy-duty truck diesel engine using conventional and low viscosity lubricants. The objectives were to explore the impact of reducing lubricant viscosity on wear, friction and fuel consumption. The radiotracing Thin Layer Activation method was used to make on-line measurements of wear at the cylinder liner, top piston ring, connecting rod small end bush and intake cam lobe. The engine was operated under a wide range of conditions (load, speed and temperature) and with lubricants of several different viscosity grades. Results indicate the relationship between lubricant viscosity and wear at four critical locations. Wear at other locations was assessed by analysis of wear metals and post test inspection. The fuel consumption was then measured on the same engine with the same lubricants. Results indicate the relationship between oil viscosity and fuel consumption under a wide range of operating conditions.
Journal Article

The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy: Part 2: Predictions

2011-08-30
2011-01-2130
A predictive model for estimating the fuel saving of “top tier” engine, axle and transmission lubricants (compared to “mainstream” lubricants), in a heavy duty truck, operating on a realistic driving cycle, is described. Simulations have been performed for different truck weights (10, 20 and 40 tonnes) and it was found that the model predicts percentage fuel economy benefits that are of a similar magnitude to those measured in well controlled field trials1. The model predicts the percentage fuel saving from the engine oil should decrease as the vehicle load increases (which is in agreement with field trial results). The percentage fuel saving from the axle and gearbox oils initially decreases with load and then stays more or less constant. This behaviour is due to the detailed way in which axle and gearbox efficiency varies with speed/load and lubricant type.
Journal Article

The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy. Part 1: Measurements

2011-08-30
2011-01-2129
It is expected that the world's energy demand will double by 2050, which requires energy-efficient technologies to be readily available. With the increasing number of vehicles on our roads the demand for energy is increasing rapidly, and with this there is an associated increase in CO₂ emissions. Through the careful use of optimized lubricants it is possible to significantly reduce vehicle fuel consumption and hence CO₂. This paper evaluates the effects on fuel economy of high quality, low viscosity heavy-duty diesel engine type lubricants against mainstream type products for all elements of the vehicle driveline. Testing was performed on Shell's driveline test facility for the evaluation of fuel consumption effects due to engine, gearbox and axle oils and the variation with engine operating conditions.
Technical Paper

The Development of CVT Fluids with Higher Friction Coefficients

2003-05-19
2003-01-1978
The development of new transmission designs continues to affect the vehicle market. Continuously variable transmissions (CVTs) remain one of the more recent designs that impact the vehicle market. A desire for high belt-pulley capacity has driven studies concentrating on metal-on-metal (M/M) friction as a function of the CVT fluid. This paper describes the statistical techniques used to optimize the fluid friction as a function of additive components in a bench-scale, three-element test rig.
Technical Paper

The Application of Telematics to the High-Precision Assessment of Fuel-Borne Fuel Economy Additives

2012-09-10
2012-01-1738
The demonstration benefit from fuel-borne fuel-economy additives to a precision of 1%, or better, traditionally requires very careful experimental design and considerable resource intensity. In practice, the process usually requires the use of well-defined drive cycles (e.g. emission certification cycles HFET, NEDC) in conjunction with environmentally-controlled chassis dynamometer facilities. Against this background, a method has been developed to achieve high-precision fuel economy comparison of gasoline fuels with reduced resource intensity and under arbitrary real-world driving conditions. The method relies upon the inference of instantaneous fuel consumption via the collection of OBD data and the simultaneous estimation of instantaneous engine output from vehicle dynamical behaviour.
Technical Paper

TBN Retention - Are We Missing the Point?

1997-10-01
972950
Historically, the characterization of fresh and used diesel engine lubricants has been based on a limited number of analytical techniques. One of the most important analyses has always been the total base number (TBN) measurement. Although the TBN measurements are informative, easy, and quick, it can be misleading to base the judgment of an oil's performance solely on one criterion. This paper offers observations from a field test, showing that some detergent approaches gave unacceptable performance even though the TBNs were at an acceptable level. It is hypothesized that some detergents do not effectively neutralize all acidic species present in the lubricant, thereby reserving their own base while in fact the oil may no longer provide sufficient protection against bearing corrosion. This hypothesis is supported with bench and engine test data. It is recommended that, at a minimum, total acid number (TAN) measurements be included in any analysis.
Technical Paper

Supporting the Transportation Industry: Creating the GC-LB and High-Performance Multiuse (HPM) Grease Certification Programs

2023-10-31
2023-01-1652
This paper outlines the history and background of the NLGI (formerly known as the National Lubricating Grease Institute) lubricating grease specifications, GC-LB classification of Automotive Service Greases as well as details on the development of new requirements for their High-Performance Multiuse (HPM) grease certification program. The performance of commercial lubricating grease formulations through NLGI's Certification Mark using the GC-LB Classification system and the recently introduced HPM grease certification program will be discussed. These certification programs have provided an internationally recognized specification for lubricating grease and automotive manufacturers, users and consumers since 1989. Although originally conceived as a specification for greases for the re-lubrication of automotive chassis and wheel bearings, GC-LB is today recognized as a mark of quality for a variety of different applications.
Technical Paper

Soot Related Viscosity Increase - A Comparison of the Mack T-11 Engine Test to Field Performance

2004-10-25
2004-01-3009
Soot related viscosity increase has been reported as a field issue in some diesel engines and this led to the development of the T-11 engine test, incorporated in the Mack EO-N Premium Plus 03 specification (014 GS 12037). This study compares T-11 laboratory engine tests and vehicle field tests and seeks to confirm the correlation between them. The findings are that the T-11 test provides an effective screening tool to investigate soot related viscosity increase, and the severity of the engine test limits gives a substantial margin of safety compared to the field. A complementary study was conducted in conjunction with this work that focuses on the successful application of electrochemical sensor technology to diagnose soot content and soot related viscosity increase. This will be the subject of a separate paper.
Technical Paper

Review of Exhaust Emissions of Compression Ignition Engines Operating on E Diesel Fuel Blends

2003-10-27
2003-01-3283
Recently, research and testing of oxygenated diesel fuels has increased, particularly in the area of exhaust emissions. Included among the oxygenated diesel fuels are blends of diesel fuel with ethanol, or E diesel fuels. Exhaust emissions testing of E diesel fuel has been conducted by a variety of test laboratories under various conditions of engine type and operating conditions. This work reviews the existing public data from previous exhaust emissions testing on E diesel fuel and includes new testing performed in engines of varied design. Emissions data compares E diesel fuel with normal diesel fuel under conditions of different engine speeds, different engine loads and different engine designs. Variations in performance under these various conditions are observed and discussed with some potential explanations suggested.
Technical Paper

Over a Decade of LTMS

2004-06-08
2004-01-1891
The Lubricant Test Monitoring System (LTMS) is the calibration system methodology and protocol for North American engine oil and gear oil tests. This system, administered by the American Society for Testing Materials (ASTM) Test Monitoring Center (TMC) since 1992, has grown in scope from five gasoline engine tests to over two dozen gasoline, heavy duty diesel and gear oil tests ranging from several thousand dollars per test to almost one-hundred thousand dollars per test. LTMS utilizes Shewhart and Exponentially Weighted Moving Average (EWMA) control charts of reference oil data to assist in the decision making process on the calibration status of test stands and test laboratories. Equipment calibration is the backbone step necessary in the unbiased evaluation of candidate oils for oil quality specifications.
Technical Paper

Opportunity for Diesel Emission Reductions Using Advanced Catalysts and Water Blend Fuel

2000-03-06
2000-01-0182
This paper features the results of emission tests conducted on diesel oxidation catalysts, and the combination of diesel oxidation catalysts and water blend fuel (diesel fuel continuous emulsion). Vehicle chassis emission tests were conducted using an urban bus. The paper reviews the impact and potential benefits of combining catalyst and water blend diesel fuel technologies to reduce exhaust emissions from diesel engines.
Technical Paper

On-Board Sensor Systems to Diagnose Condition of Diesel Engine Lubricants - Focus on Soot

2004-10-25
2004-01-3010
Soot is a typical byproduct of the diesel fuel combustion process, and a portion of the soot inevitably enters an engine's crankcase. A key functionality of a diesel engine lubricant is to disperse and suspend soot so that larger-particle agglomerations are prevented. The role of soot agglomeration in abrasive engine wear and lubricant viscosity increase is the subject of a continuing investigation; however, what is generally known is that once an engine lubricant loses its ability to control soot and a rapid viscosity increase begins, the lubricant has reached the end of its useful life and should be changed to maximize engine performance and life. This issue of soot related viscosity increase is of such importance that the Mack T-11 engine test was developed as a laboratory tool to evaluate lubricants. The newly proposed Mack EO-N Premium Plus - 03 specification includes a T-11 performance requirement.
X