Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Gas Exchange Optimization and the Impact on Emission Reduction for HSDI Diesel Engines

2009-04-20
2009-01-0653
The main tasks for all future powertrain developments are: regulated emissions, CO2-values, comfort, good drivability, high reliability and affordable costs. One widely discussed approach for fuel consumption improvement within passenger car applications, is to incorporate the downsizing effect. To attain constant engine performance an increase of boost pressure and/or rated speed is mandatory. In both cases, the mass flow rate through the intake and exhaust ports and valves will rise. In this context, the impact of the port layout on the system has to be reassessed. In this paper, the impact of the port layout on a modern diesel combustion system will be discussed and a promising concept shall be described in detail. The investigations shown include flow measurements, PIV measurements of intake flow, CFD simulations of the flow field during intake and results from the thermodynamic test bench. One of the important topics is to prove the impact of the flow quality on the combustion.
Technical Paper

Experimental Investigation of a RCCI Combustion Concept with In-Cylinder Blending of Gasoline and Diesel in a Light Duty Engine

2015-09-06
2015-24-2452
Within this study a dual-fuel concept was experimentally investigated. The utilized fuels were conventional EN228 RON95E10 and EN590 Diesel B7 pump fuels. The engine was a single cylinder Diesel research engine for passenger car application. Except for the installation of the port fuel injection valve, the engine was not modified. The investigated engine load range covered low part load operation of IMEP = 4.3 bar up to IMEP = 14.8 bar at different engine speeds. Investigations with Diesel pilot injection showed that the dual-fuel approach can significantly reduce the soot/NOx-trade-off, but typically increases the HC- and CO-emissions. At high engine load and gasoline mass fraction, the premixed gasoline/air self-ignited before Diesel fuel was injected. Reactivity Controlled Compression Ignition (RCCI) was subsequently investigated in a medium load point at IMEP = 6.8 bar.
Journal Article

Drivetrain Energy Distribution and Losses from Fuel to Wheel

2013-11-20
2013-01-9118
Depending on a vehicles drive cycle, an improvement of the overall drivetrain efficiency does not necessarily have to go along with an improvement of its mileage. In here the ratio of energy to overcome rolling resistance, aerodynamic drag, acceleration and energy wasted directly in wheel brakes is responsible for potentially differing trends. A detailed knowledge of energy flows, sources and sinks makes up a substantial step into optimizing any drive train. Most fuel energy leaves the drivetrain via exhaust pipes. Next to usable mechanical energy, a big amount is spent to heat up the system directly or to overcome drive train friction, which is converted into heat to warm up the system additionally. An in depth quantification of the most important energy flows for an upper middle-sized class gasoline powered drive train is given as results of warm-up cycle simulations.
Journal Article

An Experimental Investigation of Dual-Fuel Combustion in a Light Duty Diesel Engine by In-Cylinder Blending of Ethanol and Diesel

2015-09-01
2015-01-1801
This study investigated dual-fuel operation with a light duty Diesel engine over a wide engine load range. Ethanol was hereby injected into the intake duct, while Diesel was injected directly into the cylinder. At low loads, high ethanol shares are critical in terms of combustion stability and emissions of unburnt hydrocarbons. As the load increases, the rates of heat release become problematic with regard to noise and mechanical stress. At higher loads, an advanced injection of Diesel was found to be beneficial in terms of combustion noise and emissions. For all tests, engine-out NOx emissions were kept within the EU-6.1 limit.
X