Refine Your Search

Topic

Author

Search Results

Technical Paper

the effect of Residual Stresses Induced by Strain-Peening upon Fatigue Strength

1960-01-01
600018
THE PURPOSE of this experiment was to determine the role of residual stresses in fatigue strength independent of other factors usually involved when residual stresses are introduced. It consisted of an investigation of the influence of residual stresses introduced by shotpeening on the fatigue strength of steel (Rockwell C hardness 48) in unidirectional bending. Residual stresses were varied by peening under various conditions of applied strain. This process introduced substantially the same amount and kind of surface cold working with residual stresses varying over a wide range of values. It was found that shotpeening of steel of this hardness is beneficial primarily because of the nature of the macro-residual-stresses introduced by the process. There is no gain attributable to “strain-hardening” for this material. An effort was made to explain the results on the basis of three failure criteria: distortion energy, maximum shear stress, and maximum stress.*
Technical Paper

Why Thermoplastic Door Hardware Systems Make Economic Sense Now

1997-02-24
970143
Engineering thermoplastics are widely used in a variety of automotive components systems because of their excellent balance of mechanical performance, design flexibility, aesthetics, parts integration, and low specific gravity. This combination of properties allows for the creation of highly integrated modules, which can increase assembly efficiency and reduce mass, part count, warranty and ergonomic issues, and systems costs. As a result, the use of engineering thermoplastic materials can enhance market competitiveness at a time of increased global competition. To evaluate the economic advantages of polymers in a specific vehicle system, a design for assembly (DFA) case study was conducted with the goal of determining the variable system cost case for a generic thermoplastic door module system vs. conventional-build door systems based on assembly savings gains. This paper will describe the study and show the results achieved.
Technical Paper

WHERE DOES ALL THE POWER GO?

1957-01-01
570058
AS a basis for the analyses of this symposium, a hypothetical car has been used to evaluate the engine power distribution in performance. Effects of fuel,-engine accessories, and certain car accessories are evaluated. The role of the transmission in making engine power useful at normal car speeds is also discussed. Variables encountered in wind and rolling resistance determinations are reevaluated by improved test techniques. Net horsepower of the car in terms of acceleration, passing ability and grade capability are also summarized.
Technical Paper

Viscosity Effects on Engine Wear Under High-Temperature, High-Speed Conditions

1978-02-01
780982
Four multigrade engine oils, containing the same base oil plus SE additive package but VI improvers of differing shear stability, were evaluated in 80 000 km of high-speed, high-temperature vehicle service. Bearing, piston ring and valve guide wear, as well as oil consumption, oil filter plugging and engine cleanliness were all worse for the engines operated on the low-shear stability oils. The wear differences were traced to differences in high-shear-rate viscosity, while the cleanliness, filter plugging and oil consumption differences occurred because of excessive wear or polymer shear degradation. These results suggest that engine oil viscosity should be specified under high-shear-rate conditions.
Technical Paper

Vehicle Crash Research and Manufacturing Experience

1968-02-01
680543
The search for improvements in occupant protection under vehicle impact is hampered by a real lack of reliable biomechanical data. To help fill this void, General Motors has initiated joint research with independent researchers such as the School of Medicine, U. C. L. A. – in this case to study localized head and facial trauma — and has developed such unique laboratory tools as “Tramasaf,” a human-simulating headform, and “MetNet,” a pressure-sensitive metal foam. Research applied directly to product design also has culminated in developments such as the Side-Guard Beam for side impact protection.
Technical Paper

Variation in Cyclic Deformation and Strain-Controlled Fatigue Properties Using Different Curve Fitting and Measurement Techniques

1999-03-01
1999-01-0364
The strain-life approach is now commonly used for fatigue life analysis and predictions in the ground vehicle industry. This approach requires the use of material properties obtained from strain-controlled uniaxial fatigue tests. These properties include fatigue strength coefficient (σf′), fatigue strength exponent (b), fatigue ductility coefficient (εf′), fatigue ductility exponent (c), cyclic strength coefficient (K′), and cyclic strain hardening exponent (n′). To obtain the aforementioned properties for the material, raw data from stable cyclic stress-strain loops are fitted in log-log scale. These data include total, elastic and plastic strain amplitudes, stress amplitude, and fatigue life. Values of the low cycle fatigue properties (σf′, b, εf′, c) determined from the raw data depend on the method of measurement and fitting. This paper examines the merits and influence of using different measurement and fitting methods on the obtained properties.
Technical Paper

Vapor-Locking Tendencies of Fuels A Practical Approach

1958-01-01
580034
THIS paper describes what the authors consider to be a simplified method of determining the vapor-locking tendencies of gasolines. The study of vapor lock was undertaken after they found the Reid vapor pressure method to be inadequate. The result of their work was the development of the General Motors vapor pressure, a single number which predicts vapor-locking tendency. The authors point out the following advantages of the new method: It allows direct comparisons of vapor-lock test results of different reference fuel systems; establishes distribution curves of volatility requirements of cars for vapor-lock free operation and of vapor-locking tendencies of gasolines; is a common reference value for both petroleum and automotive engineers. Finally, it more realistically evaluates the effects of small weathering losses on vapor-locking tendency than does Rvp.
Technical Paper

Utilization of a Chassis Dynamometer for Development of Exterior Noise Control Systems

1997-05-20
972012
The development of systems and components for control of exterior noise has traditionally been done through an iterative process of on road testing. Frequently, road testing of vehicle modifications are delayed due to ambient environmental changes that prevent testing. Vehicle dynamometers used for powertrain development often had limited space preventing far field measurements. Recently, several European vehicle manufacturers constructed facilities that provided adequate space for simulation of the road test. This paper describes the first implementation of that technology in the U.S.. The facility is typical of those used world wide, but it is important to recognize some of the challenges to effective utilization of the technique to correlate this measurement to on road certification.
Technical Paper

Using a Geometric Toolkit to Link Finite Element Calculations in Sheet Metal Forming Analysis

1994-03-01
940748
Sheet metal forming of automobile body panel consists of two processes performed in series: binder forming and punch forming. Due to differences in deformation characteristics of the two forming processes, their analysis methods are different. The binder wrap surface shape and formed part shape are calculated using different mathematical models and different finite element codes, e.g., WRAPFORM and PANELFORM, respectively. The output of the binder forming analysis may not be directly applicable to the subsequent punch forming analysis. Interpolation, or approximation, of the calculated binder wrap surface geometry is needed. This surface representation requirement is carried out using computer aided geometric design tools. This paper discusses the use of such a tool, SURFPLAN, to link WRAPFORM and PANELFORM calculations.
Technical Paper

Use of Parametric Modeling in the Development of Energy Absorber Applications

2002-03-04
2002-01-1226
Automotive styling and performance trends continue to challenge engineers to develop cost effective bumper systems that can provide efficient energy absorption and also fit within reduced package spaces. Through a combination of material properties and design, injection-molded engineering thermoplastic (ETP) energy absorption systems using polycarbonate/polybutylene terephthalate (PC/PBT) alloys have been shown to promote faster loading and superior energy absorption efficiency than conventional foam systems. This allows the ETP system to provide the required impact protection within a smaller package space. In order to make optimal use of this efficiency, the reinforcing beam and energy absorber (EA) must be considered together as an energy management system. This paper describes the development of a predictive tool created to simplify and shorten the process of engineering efficient and cost effective beam/EA energy management systems.
Technical Paper

Understanding the Mechanical Behavior of Threaded Fasteners in Thermoplastic Bosses Under Load

1996-02-01
960293
Because it is common to attach plastic parts to other plastic, metal, or ceramic assemblies with mechanical fasteners that are often stronger and stiffer than the plastic with which they are mated, it is important to be able to predict the retention of the fastener in the polymeric component. The ability to predict this information allows engineers to more accurately estimate length of part service life. A study was initiated to understand the behavior of threaded fasteners in bosses molded from engineering thermoplastic resins. The study examined fastening dynamics during and after insertion of the fastener and the effects of friction on the subsequent performance of the resin. Tests were conducted at ambient temperatures over a range of torques and loads using several fixtures that were specially designed for the study. Materials evaluated include modified-polyphenylene ether (M-PPE), polyetherimide (PEI), polybutylene terephthalate (PBT), and polycarbonate (PC).
Technical Paper

U.S. Automotive Corrosion Trends Over the Past Decade

1995-02-01
950375
Since 1985, the Body Division of the Automotive Corrosion and Prevention Committee of SAE (ACAP) has conducted biannual surveys of automotive body corrosion in the Detroit area. The purpose of these surveys is to track industry wide corrosion protection improvements and to make this information available for public consumption. The survey consists of a closed car parking lot survey checking for perforations, blisters, and surface rust. This paper reports the results of the five surveys conducted to date.
Technical Paper

Two-Shot and Overmolding Technology for Automotive Applications Using Engineering Thermoplastics

2002-03-04
2002-01-0274
There are a multitude of opportunities to utilize two-shot or overmolding technology in the automotive industry. Two-shot or overmolding a thermoplastic elastomer onto a rigid substrate can produce visually appealing, high quality parts. In addition, use of this technology can offer the molder significant reductions in labor and floor space consumption as well as a reduction in system cost. Traditionally, two-shot applications were limited to olefinbased TPE's and substrates, which often restricted rigidity, structure and gloss levels. With the development of thermoplastic elastomers that bond to engineering thermoplastics, two-shot molding can now produce parts that require higher heat, higher gloss and greater structural rigidity. This paper will outline engineering thermoplastics that bond with these new elastomers, discuss potential applications, and review circumstances that offer the best opportunity to call upon the advantages of two-shot and overmolding technology.
Technical Paper

Trends Driving Design and Materials Changes in the Instrument Panel System

1997-02-24
970445
The instrument panel (IP) is one of the largest, most complex, and visible components of the vehicle interior, and like most other major systems in passenger cars and light trucks, it has undergone considerable aesthetic and functional changes over the past decade. This is because a number of design, engineering, and manufacturing trends have been driving modifications in both the role of these systems and the materials used to construct them since the mid- '80s. This paper will trace the recent evolution of IP systems in terms of the trends affecting both design and materials usage. Specific commercial examples will be used to illustrate these changes.
Technical Paper

Towards Improved Halogen Lighting Performance using a Combination of High Luminous Flux Sources and a Lens Material Approach

2004-03-08
2004-01-0797
Currently, automobile manufacturers receive automotive headlamp assemblies from headlamp manufacturers with outer lenses produced of clear or slightly blue tinted polycarbonate. Such headlamp designed to provide optimized light output have very similar aesthetics, and leave little room to differentiate one car platform from another, using the outer lens color. With edge glow technology a car manufacturer can provide an appealing aesthetic look (edge glow effect) from the outer lens. Additionally, this technology can be used to improve the quality of the beam color emitted through the outer lens. Dependent on the chosen combination of halogen source and lens formulation, a range of beam colors spanning from halogen to HID is attainable, where the beam pattern and color continue to conform to the applicable SAE and ECE beam photometry and color standards and regulations.
Technical Paper

TodayS Electronics in TodayS Vehicles

1998-10-19
98C028
Historically, the long development time required to produce a new automobile has meant that the electronics in that vehicle might lag the state-of-the-art by several years. For traditional vehicle electronics, this was certainly an appropriate delay, ensuring through extensive testing and qualification that the quality and reliability of the electronic systems met rigorous standards. However, with the growing consumer-oriented electronics content in today's vehicles, it is becoming more difficult for the automotive manufacturers to meet consumers' expectations with older technology. Couple this with the fast-paced consumer product cycle, typically nine to eighteen and the result is increasing pressure on the vehicle manufacturers from after-market electronics suppliers, who can update their product lines as fast as the component manufacturers can produce new models.
Technical Paper

Three-Dimensional Heat Transfer & Thermoelastic Deformation Predictions in Forward Lighting

2000-03-06
2000-01-1396
The thermal performance of an automotive forward-lighting assembly is predicted with a computational fluid-dynamics (CFD) program. A three-dimensional, steady-state heat-transfer model seeks to account for convection and radiation within the enclosure, conduction through the thermoplastic walls and lens, and external convection and radiation losses. The predicted temperatures agree well with experimental thermocouple and infrared data on the housing. Driven by the thermal expansion of the air near the bulb surface, counter-rotating recirculation zones are predicted within the enclosure. The highest temperatures in the plastic components are predicted on the inner surface of the shelf above the bulb where airflow rising from the hot bulb surface impinges.
Technical Paper

Thinwall Injection Molding for Instrument Panels

2001-03-05
2001-01-1272
As the global auto industry wrote the final chapter on its first century, we saw the average thickness of an automotive instrument panel drop from 3.0 mm-3.5 mm to 2.0 mm-2.3 mm, as found in the 1999 Volkswagen Jetta and Golf. By reducing the wall thickness of the instrument panel, Volkswagen started an industry trend: both OEMs and tiers are investigating technologies to produce parts that combine a lower cost-per-part via material optimization and cycle-time reduction with the superior performance of engineering thermoplastics. The goal is to produce parts that are positioned more competitively at every stage of the development cycle - from design, to manufacturing, to assembly, to “curb appeal” on the showroom floor. The key to this manufacturing and design “sweet spot” is a technology called thinwall - the molding of plastic parts from engineering thermoplastics with wall thicknesses thinner than conventional parts of similar geometry.
Technical Paper

Thermoplastic Materials for Throttle Body Applications

1999-03-01
1999-01-0316
Use of thermoplastic materials for throttle body applications can offer substantial weight, cost, and integration benefits. This paper will discuss the many elements that comprise materials selection, as well as the design and testing of composite throttle bodies. Polyetherimide (PEI), polyphenylene sulfide (PPS), and polybutylene terephthalate (PBT) materials will be discussed and compared as candidates for automotive throttle bodies. The focus areas that will be covered in this paper include: Materials Selection - The criteria for materials selection will be discussed and the properties of candidate thermoplastics compared with key requirements of throttle body applications. Bore and Plate Dimensional Stability and Consistency - The effects of thermal cycling, coefficient of thermal expansion, humidity, and design will be discussed, as well as their relation to bore/plate air leakage.
Technical Paper

Thermoformed Soft Instrument Panel

2003-03-03
2003-01-1171
The automotive industry is continually striving for opportunities to take additional cost and mass out of vehicle systems. Large parts such as an Instrument Panel retainer are good candidates because a small percent reduction in mass can translate into a significant material mass savings. Multiple requirements for a soft instrument panel including safety, stiffness, adhesion, etc. can make these savings difficult to achieve. This paper will describe how a new material and process development for the fabrication of a soft instrument panel can produce 50% weight savings with a 20% cost reduction potential. In addition, this new technology exhibits improved performance over existing materials during safety testing.
X