Refine Your Search

Topic

Author

Search Results

Technical Paper

the effect of Residual Stresses Induced by Strain-Peening upon Fatigue Strength

1960-01-01
600018
THE PURPOSE of this experiment was to determine the role of residual stresses in fatigue strength independent of other factors usually involved when residual stresses are introduced. It consisted of an investigation of the influence of residual stresses introduced by shotpeening on the fatigue strength of steel (Rockwell C hardness 48) in unidirectional bending. Residual stresses were varied by peening under various conditions of applied strain. This process introduced substantially the same amount and kind of surface cold working with residual stresses varying over a wide range of values. It was found that shotpeening of steel of this hardness is beneficial primarily because of the nature of the macro-residual-stresses introduced by the process. There is no gain attributable to “strain-hardening” for this material. An effort was made to explain the results on the basis of three failure criteria: distortion energy, maximum shear stress, and maximum stress.*
Technical Paper

some metallurgical aspects of … Pontiac V-8 Engine Pearlitic Malleable Iron Crankshaft

1958-01-01
580013
PEARLITIC malleable iron crankshafts are being used in the new Pontiac engine as a result of recent developments. This paper discusses the physical properties of pearlitic malleable iron such as elastic modulus, fatigue endurance, and tensile strength. According to the author, definite machining economies result from using pearlitic malleable iron crankshafts.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Using a Geometric Toolkit to Link Finite Element Calculations in Sheet Metal Forming Analysis

1994-03-01
940748
Sheet metal forming of automobile body panel consists of two processes performed in series: binder forming and punch forming. Due to differences in deformation characteristics of the two forming processes, their analysis methods are different. The binder wrap surface shape and formed part shape are calculated using different mathematical models and different finite element codes, e.g., WRAPFORM and PANELFORM, respectively. The output of the binder forming analysis may not be directly applicable to the subsequent punch forming analysis. Interpolation, or approximation, of the calculated binder wrap surface geometry is needed. This surface representation requirement is carried out using computer aided geometric design tools. This paper discusses the use of such a tool, SURFPLAN, to link WRAPFORM and PANELFORM calculations.
Technical Paper

The Use of Finite Element Analysis to Predict Body Build Distortion

1995-04-01
951120
Finite element methods can be used to simulate a class of variation problems induced by build distortion in the assembly process. The FEM approach was used to study two representative assembly problems: 1) Front fender mounting and resulting distortion due to various fastening sequences; and, 2) Coupe door assembly process and resulting deformation due to clamping and welding of flexible sheet metal parts. FEM is used to generate sensitivities of various process conditions. Correlation with measured Co-ordinate Measuring Machine (CMM) data is shown. The use of FEM to simulate manufacturing/assembly processes in the automotive industry is in it's infancy. As the new methods are developed this capability can be used to study the assembly process and provide guidance in designing more robust parts and assembly processes.
Technical Paper

The Effects of Head Gasket Geometry on Engine-Out HC Emissions from S.I. Engines

1999-10-25
1999-01-3580
This study evaluated multi-layer steel and composite head gaskets of various thicknesses (0.43 to 1.5 mm) and fire-ring diameters to determine the influence of head gasket crevices on engine-out hydrocarbon (HC) emissions. The upper limit in the percent reduction in HC emissions from gasket-design modifications is estimated to be about 15%. At part-load conditions, the lowest HC emissions were measured for head-gasket thickness of about 1 mm. Significantly smaller thicknesses of the order of 0.4 mm result in an increase in HC emissions. Substantial hydrocarbon-emissions advantage may be realized by minimizing the gasket-to-cylinder bore offset.
Technical Paper

The Development of a Sound Quality-Based End-of-Line Inspection System for Powered Seat Adjusters

2001-03-05
2001-01-0040
In recent years, the perceived quality of powered seat adjusters based on their sound during operation has become a primary concern for vehicle and seat manufacturers. Historical noise targets based on overall dB(A) at the occupant's ear have consistently proved inadequate as a measure of the sound quality of a seat adjuster. Significant effort has been devoted to develop alternative sound quality metrics that can truly discriminate between “good” and “bad” seat adjusters. These new metrics have been successfully applied for some years by product development engineers in test labs. However, in the assembly plant the sound quality of the seat adjuster is still assessed subjectively by an operator at the end of the assembly line. The main problem with this approach is not only the lack of consistency and repeatability across large samples of seat tracks, but also the fact that the only feedback provided from the end-of-line to the product development team is of subjective nature.
Technical Paper

The Design of Passenger Car Cast Aluminum Wheels

1983-02-01
830016
Permanent mold cast aluminum wheels have been widely used as original equipment on passenger cars for a number of years. Testing and field experience together with manufacturing and plant processing experience has resulted in the development of a number of recommended design practices which are outlined in this paper. Methods used to test that design requirements have been met will be presented. Basic wheel designs, rigid and flexible, will be discussed together with the currently used mounting face configurations. Detail design features such as rim contour, nut boss, valve hole, hub pilot, mounting face and window openings will be reviewed. Future design and manufacturing trends will be discussed.
Technical Paper

The Bulge of Tubes and a Failure Criterion for Tube Hydroforming

2001-03-05
2001-01-1132
The bulge test in hydroforming is a simple fundamental experiment used to obtain basic knowledge in tube expansion. The results can be used to assist design and manufacturing of hydroformed automotive parts. It also can be used to develop a failure criterion for tubes in hydroforming. For these purposes, a section of a long unsupported tube with fixed ends was simulated numerically to obtain the mechanical states of the tube subjected to internal pressure. Steel and aluminum tubes are used. For the bulge tests, the internal pressure reaches a maximum and then decreases in value without failure while the stress, strain and volume of the tube keep increasing. A failure criterion for the bursting of a tube is proposed based on the stress-strain curve of the material.
Technical Paper

The Automotive Primary Power Supply System

1974-02-01
741208
This paper describes the major electrical characteristics of the automotive power supply system. It is a compilation of existing data and new information that will be helpful to both the electrical component and electronic assembly designers. Previously available battery/alternator data is organized to be useful to the designer. New dynamic information on battery impedance is displayed along with “cogging” transients, regulation limits and load dump characteristics.
Technical Paper

SEA in Vehicle Development Part I: Balancing of Path Contribution for Multiple Operating Conditions

2003-05-05
2003-01-1546
The application of Statistical Energy Analysis (SEA) to vehicle development is discussed, with a new technique to implement noise path analysis within a SEA model to enable efficient solution and optimization of acoustic trim. A whole vehicle Performance-Based SEA model is used, in which Sound Transmission Loss (STL) and acoustic absorption coefficient characterize subsystem performance. In such a model, the net contribution from each body panel/path, such as the floor, to a specific interior subsystem, such as the driver's head space, is extremely important for vehicle interior noise development. First, it helps to identify the critical path to root-cause potential problems. Second, it is necessary in order to perform balancing of path contributions. With current software, the power based noise contribution analysis is for direct paths/adjacent subsystems.
Technical Paper

Robust Weld Verification for Chassis Structure

1996-08-01
961776
The development of a major structural welded assembly is a lengthy and expensive project. The design and the development must generate a product that meets requirements and customer expectations. Product engineers and test engineers developing structural weldments are the target audience for this paper. The purpose of this paper is to describe a Design Of Experiments approach that was developed which helps provide qualitative information on a structural weldment's sensitivity to MIG weld variation.
Technical Paper

Robust Process Design for a Four-Bar Decklid Hinge System

2003-03-03
2003-01-0878
Auto components with large manufacturing variation may cause vehicle quality problems after they are assembled. The impact of this variation depends on the assembly process used. If the assembly process is sensitive to the component variation, the impact may be more significant. In this case, an assembly process with lower sensitivity to component variation will solve the problem. This paper presents an example where the component variation largely impacted the quality of the car, and a more robust assembly process solved the problem.
Technical Paper

Refinement and Verification of the Structural Stress Method for Fatigue Life Prediction of Resistance Spot Welds Under Variable Amplitude Loads

2000-10-03
2000-01-2727
The work presented here builds on the practical and effective spot weld fatigue life prediction method, the structural stress method (SSM), that was developed at Stanford University. Constant amplitude loading tests for various spot weld joint configurations have been conducted and the SSM has been shown to accurately predict fatigue life. In this paper refinements to the structural stress approach are first presented, including a variable amplitude fatigue life prediction method based on the SSM and Palmgren-Miner's rule. A test matrix was designed to study the fatigue behavior of spot welds under tensile shear loading conditions. Constant amplitude tests under different R-ratios were performed first to obtain the necessary material properties. Variable amplitude tests were then performed for specimens containing single and multiple welds.
Technical Paper

Reducing Background Noise Levels in Plant SQ Test Booths

2007-05-15
2007-01-2383
As customer awareness of product sound grows, the need exists to ensure that product sound quality is maintained in the manufacturing process. To this end in-process controls that employ a variety of traditional acoustical and alternate sound quality metrics are utilized, usually partly or wholly housed in a test enclosure. Often times these test cells are required to attenuate the background noise in the manufacturing facility so that the device under test can be accurately assessed. While design guidelines exist the mere size and cost of such booths make an iterative build and test approach costly in terms of materials as well as engineering and testing time. In order to expedite the design process and minimize the number of confirmation prototypes, SEA can be utilized to predict the transmission loss based upon material selection and booth construction techniques.
Technical Paper

Rear Full Overlap High Speed Car-to-Car Impact Simulation

1995-04-01
951085
A rear full overlap car-to-car high speed impact simulation using the DYNA3D Finite Element Software was performed to examine the crush mode for rear structure of a vehicle and to observe the effect of rear bumper system in order to maintain the fuel system integrity. The study was conducted first for two different bumper system configurations, namely: (1) validating the model for struck vehicle with steel rear bumper system, (2) simulating rear end collision with composite rear bumper system attached to the rear rails of struck vehicle. Later a third simulation of the model was conducted with a viable design modification to the composite bumper system for improved crashworthiness. It was identified that a more comprehensive FEA model of the bullet car including front end structure, powertrain components, cooling system and other components which constitute the load paths should be incorporated in the analysis to obtain more meaningful correlation and crashworthiness prediction.
Technical Paper

Performance of Coatings for Underbody Structural Components

2001-03-05
2001-01-0363
The Auto/Steel Partnership established the Light Truck Frame Project Group in 1996 with two objectives: (a) to develop materials, design and fabrication knowledge that would enable the frames on North American OEM (original equipment manufacturer) light trucks to be reduced in weight, and (b) to improve corrosion resistance of frames on these vehicles, thereby allowing a reduction in the thickness of the components and a reduction in frame weight. To address the issues relating to corrosion, a subgroup of the Light Truck Frame Project Group was formed. The group comprised representatives from the North American automotive companies, test laboratories, frame manufacturers, and steel producers. As part of a comprehensive test program, the Corrosion Subgroup has completed tests on frame coatings. Using coated panels of a low carbon hot rolled and pickled steel sheet and two types of accelerated cyclic corrosion tests, seven frame coatings were tested for corrosion performance.
Technical Paper

OneStep™ Liftgate

1998-02-23
981008
Lear Corporation has developed a new OneStep™ Liftgate trim module. The panel consists of all mechanical components and a trim cover assembled into one module. This structural liftgate uses the trim substrate and a “beam” as the common attachment point for all liftgate hardware. The assembly includes all of the liftgate components mounted to the back of the interior trim panel.
Technical Paper

Nylon RIM Development for Automotive Body Panels

1985-02-01
850157
The performance and production requirements for future passenger vehicles has increased the efforts to replace metal body panels with plastic materials. This has been accomplished, to a large extent on some production vehicles that have been introduced recently. Unfortunately, these plastic body applications have necessitated special off-line handling or low temperature paint processing. However, the advantages of RIM nylon, offer the potential for uniquely new plastic body designs, that can be processed through existing assembly plants, much like the steel panels they are intended to replace. The intent of this paper is to discuss the rationale for future plastic body panel material selection and related nylon RIM development efforts.
Technical Paper

Multivariate Robust Design

2005-04-11
2005-01-1213
In a complex system, large numbers of design variables and responses are involved in performance analysis. Relationships between design variables and individual responses can be complex, and the outcomes are often competing. In addition, noise from manufacturing processes, environment, and customer misusage causes variation in performance. The proposed method utilizes the two-step optimization process from robust design and performs the optimization on multiple responses using Hotelling's T2 statistic. The application of the T2-statistic allows the use of univariate tools in multiple objective problems. Furthermore, the decomposition of T20 into a location component, T2M and a dispersion component, T2D substitutes a complex multivariate optimization process with the simpler two-step procedure. Finally, using information from the experiment, a multivariate process capability estimates for the design can be made prior to hardware fabrication.
X