Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Numerical Evaluation of Direct Injection of Urea as NOx Reduction Method for Heavy Duty Diesel Engines

2007-04-16
2007-01-0909
The effect of ammoniac deoxidizing agent (Urea) on the reduction of NOx produced in the Diesel engine was investigated numerically. Urea desolved in water was directly injected into the engine cylinder during the expansion stroke. The NOx deoxidizing process was described using a simplified chemical kinetic model coupled with the comprehensive kinetics of Diesel oil surrogate combustion. If the technology of DWI (Direct Water Injection) with the later injection timing is supposed to be used, the deoxidizing reactants could be delivered in a controlled amount directly into the flame plume zones, where NOx are forming. Numerical simulations for the Isotta Fraschini DI Diesel engine are carried out using the KIVA-3V code, modified to account for the “co-fuel” injection and reaction with combustion products. The results showed that the amount of NOx could be substantially reduced up to 80% with the injection timing and the fraction of Urea in the solution optimized.
Technical Paper

3D Simulations by a Detailed Chemistry Combustion Model and Comparison With Experiments of a Light-Duty, Common-Rail D.I. Diesel Engine

2005-09-11
2005-24-057
The present paper reports the results of the numerical simulations carried out by means of a modified version of the KIVA-3V code and of the comparison with experimental results obtained by using different optical techniques in a single-cylinder optically accessible diesel engine. The engine is equipped with a commercial four valves cylinder head and a second-generation, Common-Rail injection system. A detailed kinetic model consisting of 283 reactions involving 69 species is applied to simulate the combustion process and the soot and NOx formation. The fuel surrogate model consisting of two constituent components, n-heptane and toluene, approximating the physical and ignition properties of the diesel oil, is considered. The Partially Stirred Reactor (PaSR) assumption is adopted to maintain the computational cost within acceptable limits.
X