Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Methane Dedicated Catalysts for Heavy-Duty Natural Gas Engines

1996-05-01
961087
Three developmental catalytic converters, provided by different companies, were tested at the exhaust of a SI (spark ignition) NG (natural gas) engine for bus application. The catalysts were all based on noble metals: Pt (platinum), Pd (palladium), Rh (rhodium) and differed in size, metal loading and active phase composition. Emission evaluation was performed according to the European ECE-R49 procedure (13 mode cycle), in stoichiometric and lean-burn conditions. In addition to regulated emission measurement, speciation of NMHC (non-methane hydrocarbons) and carbonyl compounds was performed. The results showed that all the catalyst compositions considered allowed the European emission limits to be complied when the engine operated in stoichiometric conditions, while the overall best performance in the lean region was obtained on the catalyst with noble metal composition Pd:Rh=21:1.
Technical Paper

Influencing Parameters of the Exhaust Gas Emissions of a Stoichiometric Natural Gas Bus in Real Use

2001-09-23
2001-24-0038
In the frame of the IEA-AMF, Annex XVII project ‘Real Impact of New Technologies for Heavy Duty Vehicles’, three state-of-the-art city bus technologies were evaluated for fuel consumption and emissions in real city traffic and in a number of test cycles, both on engine and on vehicle level. One of the three buses was a natural gas bus with multi-point fuel injection, stoichiometric fuel control and three-way catalyst. Compared to the other tested technologies, this engine reached very low exhaust gas emissions. The paper will discuss the results obtained with the stoichiometric natural gas engine and compare the emissions in real traffic versus various engine test cycles, based on a number of influencing parameters. Concerning cycle characteristics it was the distribution of the engine operating points which had most effect on the exhaust gas emissions.
Technical Paper

Analysis of Combustion Instability Phenomena in a CNG Fueled Heavy-Duty Turbocharged Engine

2001-05-07
2001-01-1907
The use of Compressed Natural Gas as an alternative fuel in urban transportation is nearly established and represents an efficient short and medium term solution to face with urban air pollution. However, in order to completely exploit its potential, the engine needs to be specifically designed to operate with this fuel. In the latest years, the authors have investigated the performances of a Heavy Duty Turbocharged CNG fuelled engine both experimentally and by using some analytical tools specifically developed by them which have been used for the engine optimisation. In the present paper the simulation approach has been enlarged by means of a co-operative use of a CFD code and experimental analysis on the actual engine. The numerical simulation of combustion process has, in fact, been used, to interpret series of pressure cycles, aiming to analyse how cyclic fluctuations influence engine behaviour in terms of combustion efficiency and temperature and pollutant distribution.
X