Refine Your Search

Topic

Author

Search Results

Technical Paper

Under-Expanded Gaseous Jets Characterization for Application in Direct Injection Engines: Experimental and Numerical Approach

2020-04-14
2020-01-0325
In the last years, increasing concerns about environmental pollution and fossil sources depletion led transport sectors research and development towards the study of new technologies capable to reduce vehicles emissions and fuel consumption. Direct-injection systems (DI) for internal combustion engines propose as an effective way to achieve these goals. This technology has already been adopted in Gasoline Direct Injection (GDI) engines and, lately, a great interest is growing for its use in natural gas fueling, so increasing efficiency with respect to port-fuel injection ones. Alone or in combination with other fuels, compressed natural gas (CNG) represents an attractive way to reduce exhaust emission (high H/C ratio), can be produced in renewable ways, and is more widespread and cheaper than gasoline or diesel fuels. Gas direct-injection process involves the occurrence of under-expanded jets in the combustion chamber.
Technical Paper

Turbulent Jet Ignition Effect on Exhaust Emission and Efficiency of a SI Small Engine Fueled with Methane and Gasoline

2020-09-27
2020-24-0013
Pollutant emission of vehicle cars is nowadays a fundamental aspect to take into account. In the last decays, the company have been forced to study new solutions, such as alternative fuel and learn burn mixture strategy, to reduce the vehicle’s pollutants below the limits imposed by emission regulations. Pre-chamber ignition system presents potential reductions in emission levels and fuel consumption, operating with lean burn mixtures and alternative fuels. As alternative fuels, methane is considered one of the most interesting. It has wider flammable limits and better anti-knock properties than gasoline. Moreover, it is characterized by lower CO2 emissions. The aim of this work is to study the evolution of the plasma jets in a different in-cylinder conditions. The activity was carried out in a research optical small spark ignition engine equipped alternatively with standard ignition system and per-chamber.
Technical Paper

Thermal Imaging of a Li-Ion Battery for the Estimation of the Thermal Parameters and Instantaneous Heat Dissipated

2020-09-27
2020-24-0014
The electrochemical performance of a lithium-ion battery is strongly affected by the temperature. During charge and discharge cycles, batteries are subjected to an increment of temperature that can accelerate aging and loss of efficiency if critical values are reached. Knowing the thermal parameters that affect the heat exchange between the battery surface and the surrounding environment (air, cooling fins, plates, etc…) is fundamental to their thermal management. In this work, thermal imaging is applied to a laminated lithium-polymers battery as a non-invasive temperature-indication method. Measurements are taken during the discharge phase and the following cooling down until the battery reaches the ambient temperature. The 2d images are used to analyze the homogeneity of the temperature distribution on the battery surface. Then, experimental results are coupled with mathematical correlations.
Technical Paper

The Full Cycle HD Diesel Engine Simulations Using KIVA-4 Code

2010-10-25
2010-01-2234
With the advent of the KIVA-4 code which employs an unstructured mesh to represent the engine geometry, the gap in flexibility between commercial and research modeling software becomes more narrow. In this study, we tried to perform a full cycle simulation of a 4-stroke HD diesel engine represented by a highly boosted research IF (Isotta Fraschini) engine using the KIVA-4 code. The engine mesh including the combustion chamber, intake and exhaust valves and helical manifolds was constructed using optional O-Grids catching a complex geometry of the engine parts with the help of the ANSYS ICEM CFD software. The KIVA-4 mesh input was obtained by a homemade mesh converter which can read STAR-CD and CFX outputs. The simulations were performed on a full 360 deg mesh consisting of 300,000 unstructured hexahedral cells at BDC. The physical properties of the liquid fuel were taken corresponding to those of real diesel #2 oil.
Technical Paper

Statistical Investigation of In Use Emissions and Fuel Consumption Measured by PEM on Different Gasoline Cars

2013-04-08
2013-01-1511
In this paper some results relative to tests performed on road with a Fiat Panda Bipower, (CNG and gasoline powered), and a New Panda Twin Air with auto Start & Stop system, are presented. Gaseous emissions are measured with Portable Emission Measurement Systems (PEMS) on two different urban routes, in terms of traffic and slope characteristics during in use experiments. PEMS testing offers an easy and efficient way to evaluate the vehicle emissions over a huge variety of conditions and provides us a direct way to study the in-use emissions of combustion engines, when you want to verify the effect of the traffic and of a particular device on fuel economy and emissions reduction. Moreover now PEMS performances are very comparable to those obtained by standard laboratory instrumentation systems.
Technical Paper

Spray Characterization of a Single-Hole Gasoline Injector under Flash Boiling Conditions

2014-11-11
2014-32-0041
In the next future, improvements of direct injection systems for spark-ignited engines are necessary for the potential reductions in fuel consumptions and exhaust emissions. The admission and spread of the fuel in the combustion chamber is strictly related to the injector design and performances, such as to the fuel and environmental pressure and temperature conditions. In this paper the spray characterization of a GDI injector under normal and flash-boiling injection conditions has been investigated. The paper is mainly focused both on the capability of the injection apparatus/temperatures controller system to realize flash-boiling conditions, and the diagnostic setup to catch the peculiarities of the spray behavior. The work aims reporting the spray characterization under normal and flash-boiling conditions.
Technical Paper

Spectroscopic Investigation of Post-Injection Strategy Impact on Fuel Vapor within the Exhaust Line of a Light Duty Diesel Engine Supplied with Diesel/Butanol and Gasoline Blends

2013-09-08
2013-24-0066
In this paper, a high temporal resolution optical technique, based on the multi-wavelength UV-visible-near IR extinction spectroscopy, was applied at the exhaust of an automotive diesel engine to investigate the post-injection strategy impact on the fuel vapor. Experimental investigations were carried out using three fuels: commercial diesel (B5), a blend of 80% diesel with 20% by vol. of gasoline (G20) and a blend of 80% diesel with 20% by vol. of n-butanol (BU20). Experiments were performed at the engine speed of 2500rpm and 0.8MPa of brake mean effective pressure exploring two post-injection timings and two EGR rates. The optical diagnostic allowed evaluating, during the post-injection activation, the evolution of the fuel vapor in the engine exhaust line. The investigation was focused on the impact of post-injection strategy and fuel properties on the aptitude to produce hydrocarbon rich gaseous exhaust for the regeneration of diesel particulate trap (DPF).
Technical Paper

Regulated and Benzene Emissions of In-Use Two-Stroke Mopeds and Motorcycles

2000-03-06
2000-01-0862
The attention on emissions of two-wheelers has been poor in the past, but today in countries with a large two-wheeler population it gives a significant contribution to aggregate emissions. In this paper the results obtained on a fleet composed by 22 two-stroke motorcycles (including mopeds) are presented. Sixteen in-use mopeds and six 125 cm3 motorcycles have been tested over ECE 47 and ECE 40 driving cycles respectively. Regulated emissions (CO, HC, NOx), carbon dioxide, benzene and fuel consumption have been evaluated by fueling motorcycles with two different gasoline formulations. One gasoline was a commercial Italian leaded gasoline with 1% benzene content; the other was a lower benzene and aromatics content gasoline. Benzene emissions decreased according to benzene content of gasoline.
Journal Article

Real Time Emissive Behaviour of a Bi-Fuel Euro 4 SI Car in Naples Urban Area

2013-09-08
2013-24-0173
An experimental campaign was carried out to evaluate the influence of CNG and gasoline on the exhaust emissions and fuel consumption of a bi-fuel passenger car over on-road tests performed in the city of Naples. The chosen route is very traffic congested during the daytime of experimental measurements. An on-board analyzer was used to measure CO, CO2, NOx tailpipe concentrations and the exhaust flow rate. Throughout a carbon balance on the exhaust pollutants, the fuel consumption was estimated. The exact spatial position was acquired by a GPS which allowed to calculate vehicle speed and the traffic condition was monitored by a video camera. Whole trip realized by the vehicle was subdivided in succession of kinematic sequences and the vehicle emissions and fuel consumption were analyzed and presented as value on each kinematic sequence. Moreover, throughout a multivariate statistical analysis of sequences, the driving cycles characterizing the use of vehicle were identified.
Technical Paper

Real Time Control of GDI Fuel Injection during Ballistic Operation Mode

2015-09-06
2015-24-2428
Gasoline direct injection (GDI) combustion with un-throttled lean stratified operation allows to reduce engine toxic emissions and achieve significant benefits in terms of fuel consumption. However, use of gasoline stratified charges can lead to several problems, such as a high cycle-to-cycle variability and increased particle emissions. Use of multiple injection strategies allows to mitigate these problems, but it requires the injection of small fuel amounts forcing the traditional solenoid injectors to work in their “ballistic” region, where the correlation between coil energizing time and injected fuel amount becomes highly not linear. In the present work a closed-loop control system able to manage the delivery of small quantities of fuel has been introduced. The control system is based on a particular feature found on the coil voltage command signal during the de-energizing phase.
Technical Paper

Quasi-Dimensional Simulation of Downsizing and Inverter Application for Efficient Part Load Operation of Spark Ignition Engine Driven Micro-Cogeneration Systems

2018-10-30
2018-32-0061
Within the context of distributed power generation, small size systems driven by spark ignition engines represent a valid and user-friendly choice, that ensures good fuel flexibility. One issue is that such applications are run at part load for extensive periods, thus lowering fuel economy. Employing an inverter (fitted between the generator and load) allows engine operation within a wide range of crankshaft rotational velocity, therefore improving efficiency. For the purpose of evaluating the benefits of this technology within a co-generation framework, two configurations were modeled by using the GT-Power simulation software. After model calibration based on measurements on a small size engine for two-wheel applications, the downsized version was compared to a larger power unit operated at constant engine speed for a scenario that featured up to 10 kW rated power.
Technical Paper

Pros and Cons of Using Different Numerical Techniques for Transmission Loss Evaluation of a Small Engine Muffler

2010-09-28
2010-32-0028
Automotive exhaust systems give a major contribution to the sound quality of a vehicle and must be properly designed in order to produce acceptable acoustic performances. Obviously, noise attenuation is strictly related to the used materials and to its internal geometry. This last influences the wave propagation and the gas-dynamic field. The purpose of this paper is to describe advantages and disadvantages of different numerical approaches in evaluating the acoustic performance in terms of attenuation versus frequency (Transmission Loss) of a commercial two perforated tube muffler under different conditions. At first, a one-dimensional analysis is performed through the 1D GTPower® code, solving the nonlinear flow equations which characterize the wave propagation phenomena. The muffler is characterized as a network of properly connected pipes and volumes starting from 3D CAD information. Then, two different 3D analyses are performed within the commercial STS VNOISE® code.
Technical Paper

Optical Characterization of Methane Combustion in a Four Stroke Engine for Two Wheel Application

2012-04-16
2012-01-1150
In the urban area the internal combustion engines are the main source of CO₂, NO and particulate matter (PM) emissions. The reduction of these emissions is no more an option, but a necessity highlighted by the even stricter emission standards. In the last years, even more attention was paid to the alternative fuels. They allow both reducing the fuel consumption and the pollutant emissions. With regards to the gaseous fuels, methane is considered one of the most interesting in terms of engine application. It represents an immediate advantage over other hydrocarbon fuels because of the lower C/H ratio. In this paper the effect of the methane on the combustion process, the pollutant emissions and the engine performance was analyzed. The measurements were carried out in an optically accessible single-cylinder, Port Fuel Injection, four-stroke SI engine equipped with the cylinder head of a commercial 250 cc motorcycles engine and fuelled both with gasoline and methane.
Journal Article

Numerical Simulation of Gasoline and n-Butanol Combustion in an Optically Accessible Research Engine

2017-03-28
2017-01-0546
Conventional fossil fuels are more and more regulated in terms of both engine-out emissions and fuel consumption. Moreover, oil price and political instabilities in oil-producer countries are pushing towards the use of alternative fuels compatible with the existing units. N-Butanol is an attractive candidate as conventional gasoline replacement, given its ease of production from bio-mass and key physico-chemical properties similar to their gasoline counterpart. A comparison in terms of combustion behavior of gasoline and n-Butanol is here presented by means of experiments and 3D-CFD simulations. The fuels are tested on a single-cylinder direct-injection spark-ignition (DISI) unit with an optically accessible flat piston. The analysis is carried out at stoichiometric undiluted condition and lean-diluted mixture for both pure fuels.
Journal Article

Numerical Simulation and Flame Analysis of Combustion and Knock in a DISI Optically Accessible Research Engine

2017-03-28
2017-01-0555
The increasing limitations in engine emissions and fuel consumption have led researchers to the need to accurately predict combustion and related events in gasoline engines. In particular, knock is one of the most limiting factors for modern SI units, severely hindering thermal efficiency improvements. Modern CFD simulations are becoming an affordable instrument to support experimental practice from the early design to the detailed calibration stage. To this aim, combustion and knock models in RANS formalism provide good time-to-solution trade-off allowing to simulate mean flame front propagation and flame brush geometry, as well as “ensemble average” knock tendency in end-gases. Still, the level of confidence in the use of CFD tools strongly relies on the possibility to validate models and methodologies against experimental measurements.
Technical Paper

Modeling of Soot Deposition and Active Regeneration in Wall-flow DPF and Experimental Validation

2020-09-15
2020-01-2180
Growing concerns about the emissions of internal combustion engines have forced the adoption of aftertreatment devices to reduce the adverse impact of diesel engines on health and environment. Diesel particulate filters are considered as an effective means to reduce the particle emissions and comply with the regulations. Research activity in this field focuses on filter configuration, materials and aging, on understanding the variation of soot layer properties during time, on defining of the optimal strategy of DPF management for on-board control applications. A model was implemented in order to simulate the filtration and regeneration processes of a wall-flow particulate filter, taking into account the emission characteristic of the engine, whose architecture and operating conditions deeply affect the size distribution of soot particles.
Journal Article

Knock and Cycle by Cycle Analysis of a High Performance V12 Spark Ignition Engine. Part 1: Experimental Data and Correlations Assessment

2015-09-06
2015-24-2392
In this paper, a high performance V12 spark-ignition engine is experimentally investigated at test-bench in order to fully characterize its behavior in terms of both average parameters, cycle-by-cycle variations and knock tendency, for different operating conditions. In particular, for each considered operating point, a spark advance sweep is actuated, starting from a knock-free calibration, up to intense knock operation. Sequences of 300 consecutive pressure cycles are measured for each cylinder, together with the main overall engine performance, including fuel flow, torque, and fuel consumption. Acquired data are statistically analyzed to derive the distributions of main indicated parameters, in order to find proper correlations with ensemble-averaged quantities. In particular, the Coefficient of Variation (CoV) of IMEP and of the in-cylinder peak pressure (pmax) are correlated to the average combustion phasing and duration (MFB50 and Δθb), with a good coefficient of determination.
Technical Paper

Investigation of the Effect of Compression Ratio on the Combustion Behavior and Emission Performance of HVO Blended Diesel Fuels in a Single-Cylinder Light-Duty Diesel Engine

2015-04-14
2015-01-0898
Hydrotreated vegetable oil (HVO) is a renewable high quality paraffinic diesel that can be obtained by the hydrotreating of a wide range of biomass feedstocks, including vegetable oils, animal fats, waste oils, greases and algal oils. HVO can be used as a drop-in fuel with beneficial effects for the engine and the environment. The main objective of this study was to explore the potential of HVO as a candidate bio blendstock for new experimental formulations of diesel fuel to be used in advanced combustion systems at different compression ratios and at high EGR rates in order to conform to the Euro 6 NOx emission standard. The experiments were carried out in a single-cylinder research engine at three steady-state operating conditions and at three compression ratios (CR) by changing the piston.
Technical Paper

Investigation of the Effect of Boost Pressure and Exhaust Gas Recirculation Rate on Nitrogen Oxide and Particulate Matter Emissions in Diesel Engines

2013-09-08
2013-24-0017
In recent years, due to the growing problem of environmental pollution and climate change internal combustion engine stroke volume size has been reduced. The use of down-sized engines provides benefit for reducing emissions and fuel consumption especially at the inner city driving conditions. However, when the engine demands additional power, utilizing a turbocharging system is required. This study is a joint work of Istituto Motori CNR with Automotive Laboratory of Mechanical Engineering Faculty of Istanbul Technical University (ITU) and the objective of this study was devoted to increase the understanding of various engine operating conditions on emissions, especially at low load. The trade-off between Nitrogen Oxide (NOx) and Particulate Matter (PM) emissions in a Diesel engine has been examined depending on turbocharging rates and the rate of Exhaust Gas Recirculation (EGR) applied.
Technical Paper

Investigation of Ethanol-Gasoline Dual Fuel Combustion on the Performance and Exhaust Emissions of a Small SI Engine

2014-10-13
2014-01-2620
The growing concerns over the pollutant emissions as well as the depletion of fossil fuel led to the research of advanced combustion mode and alternative fuels for the reduction both of fuel consumption and exhaust emissions. The dual-fuel injection system can be used to improve the engine performance and reduce the fossil fuel consumption performing simultaneously a direct-injection (DI) and a port-fuel-injection (PFI) of different fuels. Ethanol is one of the most promising alternative fuels for SI engines. It offers high anti-knock quality because of the high octane number; moreover, being an oxygenated fuel is very effective in particle emissions reduction. On the other hand, it is characterized by lower energy density mainly because of the low lower heating value (LHV). The aim of the paper is the investigation of the ethanol-gasoline dual fuel combustion on engine performance and emissions.
X