Refine Your Search

Topic

Search Results

Journal Article

Whirl of Crankshaft Rear End, Part1: an L6-Cylinder Diesel Engine

2017-06-05
2017-01-1810
As the issue of global warming has become more serious, needs for downsizing or weight saving of an engine has been getting stronger, and forces exerted on engine parts, especially force on a crankshaft, have been getting larger and larger. In addition, since a crankshaft is a heavy engine part, needs for saving weight have been getting stronger and stronger. Therefore, determining the mechanism of high stress generation in a crankshaft system is urgently needed. This paper describes the characteristics and mechanism of a severe bending stress caused by the whirl of crankshaft rear end of an inline 6-cylinder medium-duty diesel engine. The authors measured bending stress on the fillets of the crankshaft, and found severe levels of sharp peaks in the stress curves for the crankshaft rear. To figure out why the severe levels of sharp peaks appear, they analyzed and studied the measured data.
Technical Paper

Visualization techniques to identify and quantify sources and paths of exterior noise radiated from stationary and nonstationary vehicles

2000-06-12
2000-05-0326
In recent years, Nearfield Acoustical Holography (NAH) has been used to identify stationary vehicle exterior noise sources. However that application has usually been limited to individual components. Since powertrain noise sources are hidden within the engine compartment, it is difficult to use NAH to identify those sources and the associated partial field that combine to create the complete exterior noise field of a motor vehicle. Integrated Nearfield Acoustical Holography (INAH) has been developed to address these concerns: it is described here. The procedure entails sensing the sources inside the engine compartment by using an array of reference microphones, and then calculating the associated partial radiation fields by using NAH. In the second part of this paper, the use of farfield arrays is considered. Several array techniques have previously been applied to identify noise sources on moving vehicles.
Technical Paper

Turbulence Measurement in Diesel Combustion by Optical Fiber Thermometer

1997-10-01
972915
In order to clarify the characteristics of turbulence in diesel combustion, fluctuations of pressure and temperature were measured in a DI diesel engine, and the root mean square value, the auto-correlation coefficient and the power spectrum density of the measured fluctuations were analyzed comparing between the cases with and without pilot injection. The following concluding remarks are obtained. (1) The frequency power spectrum of in-cylinder pressure history is decreased by pilot injection in two frequency ranges from 0.2 to 2.0 kHz and from 2 to 5 kHz. (2) Fluctuation of combustion pressure is dependent on the maximum rate of pressure rise, which is dependent on ignition delay. (3) The maximum RMS of soot temperature fluctuation in the diffusion combustion is dependent on the maximum RMS of pressure fluctuation in the initial combustion. (4) Fluctuation of temperature during diffusion combustion period has the characteristics of isotropic turbulence.
Technical Paper

The Use of Nearfield Acoustical Holography (NAH) and Partial Field Decomposition to Identify and Quantify the Sources of Exterior Noise Radiated from a Vehicle

1997-05-20
972053
Since powertrain noise sources are usually “hidden” within the engine compartment, it is difficult to use NAH to identify those sources and the associated partial radiation fields that together create the exterior noise field of a motor vehicle. Integrated Nearfield Acoustical Holography (INAH) has been developed to address this concern. INAH represents a combination of NAH, reference microphone selection procedures, and coherence techniques. The procedure entails sensing the sources inside the engine compartment by using an array of reference microphones, and then calculating the associated partial radiation fields by using NAH. A key factor in the success of this procedure is the selection of a good reference microphone sub-set. A selection procedure has been developed by combining condition number and coherence analyses. The partial field determination problem has been approached by using both partial coherence and Singular Value Decomposition (SVD) procedures.
Technical Paper

The Optimum Design of Engine Cooling System by Computer Simulation

1994-11-01
942270
This paper shows one example of cooling system, optimized by utilizing computer simulation in the early development stage. First, a numerical simulation is conducted to obtain the air flow rate through engine compartment room by the software “STREAM”. Second, ΔTw are calculated by the software “KULI”, developed by Steyr-Daimler-Puch AG, to evaluate the original cooling system. Third, the optimization of this system is conducted by the design of experiment for cost saving and weight reduction. The test value was well matched with the calculated one and CAE was confirmed to be very helpful for saving the proto-build cost and time period.
Technical Paper

The Isuzu P’UP - Fully Remodeled Small Pickup Truck

1981-11-01
811271
The P’UP has been on the markets worldwide since 1972, both in Japan and overseas, including for the U.S., in which case, with model designation as the Chevrolet LUV. In 1980, for the first time since its market introduction, it was fully remodelled with detail improvements reflected thereon in every aspect. This new model continues to be on the U.S. market as the Chevrolet LUV as it has been, but, beginning from spring of 1981, the similar model has been introduced to the market by the American Isuzu Motors Inc. (AIM) as the Isuzu P’UP. Taking this opportunity, a diesel version has been added to its model lineup. The diesel engine mounted on this version features its 20 to 30% better fuel efficiency over its gasoline counterpart. In the first half of this paper, the engineering concepts of its full remodelling and their onvehicle reflection will be introduced.
Technical Paper

The Application of CAE in the Development of Air Suspension Beam

1997-11-17
973232
Every year the trucking industry demands lighter weight and lower cost truck components. But it is very difficult to achieve both these targets. This paper describes the example of a suspension system design which was conducted by computer simulation, so called CAE. The computer simulation by FEM was used completely to decide the detailed shape of each part. This paper also introduces a casting method to strengthen the aluminum alloy cast using high pressure during casting. By using this method, products have a precise metallographic structure. As a result, both the development cost and period were reduced by over the half the time required of the current system and lighter and strong parts were created.
Technical Paper

Six-Cylinder-In-Line Turbo-Charged Diesel Engine Crankshaft Torsional Vibration Characteristics

2001-11-12
2001-01-2719
Engine crankshafts have been designed to avoid low-harmonic-order resonant torsional vibration in a commonly-used engine speed range, but the authors have found that, in some engines, especially turbo-charged engines, a significant degree of a low-harmonic-order exciting torque acts on the crankshaft. In these engines, the amplitude of non-resonant low-harmonic-order torsional vibration is almost as large as that of the resonant one. The authors conclude that the 3rd-order non-resonant torsional amplitude is not only significant but also characteristic of the turbo-charged engine in comparison with the naturally-aspirated engine, and recommend that crankshafts on turbo-charged diesel engines should be made stiffer than those on naturally-aspirated engines.
Technical Paper

Power and Cross Spectral Analysis of an Automobile Engine Mounting

1965-02-01
650018
A simple and easy calculation may be performed, using a three-mass vibration system model, to study the influence of an engine mounting on automobile vertical vibration. The advantage of an engine mounting of high damping rubber is confirmed by this calculation, and is further verified by using power and cross spectral analysis of an automobile random vibration. The validity of the three-mass vibration system is shown.
Technical Paper

Optimizing Steady State Diesel Efficiency and Emissions Using a SuperTurboTM on an Isuzu 7.8L Engine

2019-04-02
2019-01-0318
A driven turbocharger offers many benefits for internal combustion engines over traditional turbochargers or superchargers. One type of driven turbocharger, a SuperTurbo, is an amalgamation of supercharger, turbocharger, and turbo-compounder all in one device. This is accomplished through the combination of a high-speed traction drive that transfers bi-directional torque between the turbo shaft and a CVT, which then allows for overall ratio control between the turbo and the crankshaft. High efficiency turbine designs become feasible through the removal of overspeed and turbo lag design restrictions. Isuzu recognized the benefits of a driven turbocharger and the two companies have worked to evaluate it against more conventional turbochargers. This paper documents years of simulation, development, and engine testing, with a focus on steady state optimization of a 7.8L diesel engine.
Technical Paper

Method of Fatigue Life Estimation for Arc–Welded Structures

2000-03-06
2000-01-0781
Two working groups in the JSAE Committee of Fatigue–Reliability Section1 are currently researching the issue of fatigue life by both experimental and the CAE approach. Information regarding frequent critical problems on arc–welded structures were sought from auto–manufacturers, vehicle component suppliers, and material suppliers. The method for anti–fatigue design on arc–welded structures was established not only by a database created by physical test results in accordance with the collected information but also with design procedure taking Fracture–Mechanics into consideration. This method will be applied to vehicle development as one of the virtual laboratories in the digital prototype phase. In this paper, both the database from bench–test results on arc welded structures and FEA algorithm unique to JSAE are proposed some of the analysis results associated with the latter proposal are also reported.
Technical Paper

Improvement of Diesel Engine Performance by Variable Swirl System

1987-09-01
871618
In order to meet the demands for reduced emissions and improved fuel consumption, a subport-type variable swirl system (Isuzu Variable Electronic Economy Swirl, or IVES) was developed by Isuzu for medium- and heavy-duty direct-injection-type diesel engines. The main characteristics of IVES are: (1) It is simple in structure and only minor changes to the cylinder head are required. (2) Modular design is possible for three different swept volume engines due to the use of a common actuator and sensor. (3) The problem of air flow coefficient drop when swirl is varied has been successfully eliminated.
Technical Paper

Experiments and Analysis of Crankshaft Three-Dimensional Vibrations and Bending Stresses in a V-Type Ten-Cylinder Engine: Influence of Crankshaft Gyroscopic Motions

1997-05-20
971995
Torsional dampers have been attached to engine crankshafts only for the control of the crankshaft torsional vibrations. However, a torsional damper is a mass-spring system of three-dimensions, so the torsional damper could exert some influence on the three-dimensional vibrations of the crankshaft system. Since the inertia ring of the torsional damper has moments of inertia and it rotates with the crankshaft, gyroscopic vibrations of the inertia ring can also be generated. For a V-type ten-cylinder diesel engine (V- 10, ϕ119 × 150), the three-dimensional vibrations of the crankshaft system were calculated by the dynamic stiffness matrix method, taking account of the influence of the gyroscopic vibrations of the inertia ring of the torsional damper. The dynamic bending stresses were measured at the fillets of both the No.1 crank journal and the No.1 crank pin in the No.1 crank throw plane.
Technical Paper

Experimental Study of Static and Dynamic Behavior of the Cylinder Head Gasket in a Turbocharged Diesel Engine with Intercooler

1999-09-14
1999-01-2799
This paper describes measurement and calculation method for determining pressure on an engine gasket under the static and dynamic condition. At first, the relationship between the strain of the cylinder liner and the pressure on the gasket was determined. Then the strain of the cylinder liner was measured under the static condition as well as under the dynamic condition. The gasket contact pressure was also calculated by computer using FEM model. The calculation results were compared with the measurement results. Finally, the effects of the combustion pressure and heat on the gasket contact pressure were discussed based on the strains.
Technical Paper

Experimental Analysis of the Stick-Slip Noise from the Crankshaft Oil Seal of the Diesel Engine

2007-08-05
2007-01-3502
The noise of diesel engines operating at low idle is an important noise evaluation criterion in both commercial vehicles and passenger cars. At low idle, a quiet, pleasant noise is required. Accordingly, unusual noise occurrence at low speed is a serious problem, and the noise must be prevented. In this paper, characteristics of the stick-slip noise, which is an unusual noise that radiates from the oil seal at low idle and the generating mechanism of the stick-slip noise in the six-cylinder-inline diesel engine are discussed. In addition, a method to prevent the stick-slip noise is presented.
Technical Paper

Experimental Analysis for Bolt Stress of Crank Pulley in a Diesel Engine

2010-10-05
2010-01-1983
A torsional damper is attached to a crankshaft to control the torsional vibration of the crankshaft system. However, the damper, which has a rubber part in between a damper mass and a damper hub, possesses a three-dimensional inertia moment and an inertia mass that could excite the crankshaft system. This paper discusses the generating mechanisms of the bending strain on the bolt to fasten the damper hub to the crankshaft, from the measured bolt strains and the measured behavior of the damper mass and the damper hub under the engine operating conditions.
Technical Paper

Experiment and Computation Analyses for Torsional Vibration of Crankshaft System with Viscous Torsional Damper on Diesel Engine

1999-05-17
1999-01-1748
Experiment results were compared with computation analysis results for torsional vibration on a crankshaft system with/without a torsional viscous damper on a six-cylinder in-line type turbocharged diesel engine and a V type ten-cylinder naturally-aspirated diesel engine respectively. At first, the boundary conditions for boundary element method (BEM) model were determined to estimate the torsional stiffness of the crank-throws of the crankshafts. Then, the estimated stiffness was used to calculate the natural frequencies of the torsional vibration without the damper by dynamic stiffness matrix method. As a result, the calculated natural frequencies approximately agreed with the measured ones. Finally, the torsional vibration with the damper was analyzed by using the dynamic stiffness matrix method and complex viscous damping coefficients for the damper. The calculated torsional amplitudes and resonant engine speeds agreed with the experiment results.
Technical Paper

Establishment of Countermeasures in Side Impact by Simulations

1993-11-01
931975
To check sharply increasing traffic accident casualties, activities have been underway to analyze accidents and develop safety equipment Automobile makers have placed a great emphasis on improving safety in collision. In this situation, a new side impact standard was introduced in FMVSS 214 in October 1990 and will be applied to passenger cars in 1993 model year. The standard requires an additional full scale dynamic test in which an aluminum honeycomb moving deformable barrier (MDB) simulating the front end of a car is crashed at 33.5 mph into the side of a standstill car at an angle of 27 degrees. The Side impact Dummy's (SID) Thoracic Trauma index (TTI(d)), which is the average of the maximum rib acceleration and the maximum lower spine acceleration, is limited to 90 g's for a 2-door passenger car and 85 g's for a 4-door car. The dummy's pelvic maximum acceleration must remain no greater than 130 g's for both types of cars.
Technical Paper

Engine Control Optimization for Heavy-Duty Cargo Trucks

1999-11-15
1999-01-3723
In fleet uses, heavy-duty trucks with turbo, inter-cooled engines are popular in Japan. These trucks usually experience congested traffic and/or frequent road grade change in expressways. As a result, frequent vehicle speed and engine load fluctuations are observed. This paper describes the typical, on road driving data from the field and presents one sample of engine control optimization for better fuel economy in actual road conditions.
Technical Paper

Development of a High Sensitivity and High Response Portable Smoke Meter

2014-04-01
2014-01-1580
The filtration efficiency of a DPF drops when it suffers a failure such as melting and cracks during regeneration. And then, on-board diagnostics (OBD) device has become needed worldwide to detect a DPF failure. In the development of an OBD soot sensor, evaluation of the sensor demands a portable instrument which can measure the soot concentration for on-board and in-field use. Some of the emission regulations require the in-field emission measurements under normal in-use operation of a vehicle. This study is intended to develop a high sensitivity and high response portable smoke meter for on-board soot measurements and a reference to OBD soot sensors under development. The smoke meter accommodates a 650 nm laser diode, and its principle is based on light extinction in high soot concentration range and backward light scattering for low soot concentration measurement.
X