Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Noise Sensitivity to Different Levels of Taper Wheel Bearing Brinell Damage for Body-on-Frame Passenger Vehicles

2022-09-19
2022-01-1192
This paper reviews the relationship between taper wheel bearing damage and vehicle noise and vibration for a body-on-frame pickup truck and a body-on-frame SUV. In addition to understanding how the different levels of bearing damage relate to vehicle noise, it also discusses the level of noise versus the damaged bearing’s position in the vehicle. For this study, the wheel bearing supplier provided front and rear bearings with various amounts of Brinell damage to the bearing raceways. The different bearings were evaluated subjectively for noise in the vehicle. After vehicle testing, the bearing raceway Brinell depths were measured to correlate the level of bearing damage to vehicle noise. The study shows the relationship between bearing Brinell dent depth and vehicle noise for body-on-frame light trucks and SUVs. The noise was most apparent in vehicles between 45 and 60 mph. For bearings with moderate levels of damage, steering inputs were required to hear noise.
Journal Article

Vehicle Integration Factors Affecting Brake Caliper Drag

2012-09-17
2012-01-1830
Disc brakes operate with very close proximity of the brake pads and the brake rotor, with as little as a tenth of a millimeter of movement of the pads required to bring them into full contact with the rotor to generate braking torque. It is usual for a disc brake to operate with some amount of residual drag in the fully released state, signifying constant contact between the pads and the rotor. With this contact, every miniscule movement of the rotor pushes against the brake pads and changes the forces between them. Sustained loads on the brake corner, and maneuvers such as cornering, can both produce rotor movement relative to the caliper, which can push it steadily against one or both of the brake pads. This can greatly increase the residual force in the caliper, and increase drag. This dependence of drag behavior on the movement of the brake rotor creates some vehicle-dependent behavior.
Technical Paper

Utilizing a Tracked 3-Dimensional Acoustic Probe in the Development of an Automotive Front-of-Dash

2017-06-05
2017-01-1869
During the development of an automotive acoustic package, valuable information can be gained by visualizing the acoustic energy flow through the Front-of-Dash (FOD) when a sound source is placed in the engine compartment. Two of the commonly used methods for generating the visual map of the acoustic field include Sound Intensity measurements and array technologies. An alternative method is to use a tracked 3-dimensional acoustic probe to scan and visualize the FOD in real-time when the sound source is injecting noise into the engine compartment. The scan is used to focus the development of the FOD acoustic package on the weakest areas by identifying acoustic leaks and locations with low Transmission Loss. This paper provides a brief discussion of the capabilities of the tracked 3-D acoustic probe, and presents examples of the implementation of the probe during the development of the FOD acoustic package for two mid-sized sedans.
Technical Paper

Transient Aerodynamics Simulations of a Passenger Vehicle during Deployment of Rear Spoiler

2024-04-09
2024-01-2536
In the context of vehicle electrification, improving vehicle aerodynamics is not only critical for efficiency and range, but also for driving experience. In order to balance the necessary trade-offs between drag and downforce without significant impact on the vehicle styling, we see an increasing amount of active aerodynamic solutions on high-end passenger vehicles. Active rear spoilers are one of the most common active aerodynamic features. They deploy at high vehicle speed when additional downforce is required [1, 2]. For a vehicle with an active rear spoiler, the aerodynamic performance is typically predicted through simulations or physical testing at different static spoiler positions. These positions range from fully stowed to fully deployed. However, this approach does not provide any information regarding the transient effects during the deployment of the rear spoiler, which can be critical to understanding key performance aspects of the system.
Technical Paper

Traditional and Electronic Solutions to Mitigate Electrified Vehicle Driveline Noises

2017-06-05
2017-01-1755
Hybrid powertrain vehicles inherently create discontinuous sounds during operation. The discontinuous noise created from the electrical motors during transition states are undesirable since they can create tones that do not correlate with the dynamics of the vehicle. The audible level of these motor whines and discontinuous tones can be reduced via common noise abatement techniques or reducing the amount of regeneration braking. One electronic solution which does not affect mass or fuel economy is Masking Sound Enhancement (MSE). MSE is an algorithm that uses the infotainment system to mask the naturally occurring discontinuous hybrid drive unit and driveline tones. MSE enables a variety of benefits, such as more aggressive regenerative braking strategies which yield higher levels of fuel economy and results in a more pleasing interior vehicle powertrain sound. This paper will discuss the techniques and signals used to implement MSE in a hybrid powertrain equipped vehicle.
Technical Paper

Torque Ripple Cancellation to Reduce Electric Motor Noise for Electric Vehicles

2024-04-09
2024-01-2215
Electric motor whine is a major NVH source for electric vehicles. Traditional mitigation methods focus on e-motor hardware optimization, which requires long development cycles and may not be easily modified when the hardware is built. This paper presents a control- and software-based strategy to reduce the most dominant motor order of an IPM motor for General Motors’ Ultium electric propulsion system, using the patented active Torque Ripple Cancellation (TRC) technology with harmonic current injection. TRC improves motor NVH directly at the source level by targeting the torque ripple excitations, which are caused by the electromagnetic harmonic forces due to current ripples. Such field forces are actively compensated by superposition of a phase-shifted force of the same spatial order by using of appropriate current.
Journal Article

The Honda R&D Americas Scale Model Wind Tunnel

2012-04-16
2012-01-0301
This paper describes the new Honda R&D Americas Scale Model Wind Tunnel (SWT). To help address Honda's ongoing need to improve fuel economy, reduce the driving force of a vehicle, and decrease product development time, the wind tunnel was developed and implemented to achieve high accuracy aerodynamic predictions for product development and a significantly improved capability for vehicle aerodynamics research. The SWT can accommodate model scales up to 50%. The ¾-open jet test section has a top speed of 250 km/h, a 5-belt moving ground plane with a long center belt for proper wake simulation, a test section designed specifically for very low static pressure gradient, three separate dynamic pressure measurement systems for state-of-the-art blockage corrections, and an overhead traverse for specialized measurement activities. This paper describes the decision process that led to the SWT, key commissioning results, and performance validation results with models installed.
Journal Article

The Honda Automotive Laboratories of Ohio Wind Tunnel

2023-04-11
2023-01-0656
The Honda Automotive Laboratories of Ohio (HALO) includes a new aeroacoustic wind tunnel located near Marysville, Ohio that started operations in 2022. This facility provides world-class aerodynamic flow quality and acoustic testing capabilities for the development of both passenger and motorsports vehicles. This closed-return ¾ open jet wind tunnel features a two-position flexible nozzle system with cross sections of 25 m2 and 18 m2, providing wind speeds of up to 250 km/h and 310 km/h, respectively. There is a ±180 degree turntable with boundary layer control systems, and interchangeable single belt and 5-belt moving ground plane (MGP) modules. Extensive applications of acoustic treatment in the test section and throughout the wind tunnel circuit provide a hemi-anechoic test environment and low background noise levels. A temperature control system provides uniform and stable air temperature over an operating environment between 10 °C and 50 °C.
Journal Article

The Ford Rolling Road Wind Tunnel Facility

2023-04-11
2023-01-0654
The Ford Motor Company Rolling Road Wind Tunnel (RRWT) is a state-of-the-art aerodynamic wind tunnel test facility in Allen Park, Michigan. The RRWT has operated since January 2022 and is designed for passenger and motorsport vehicle development. The test facility includes an office area, three secure customer vehicle preparation bays, a garage area, a vehicle frontal area measurement system, and a full-scale ¾ open jet wind tunnel. The wind tunnel features an interchangeable single belt and 5-belt Moving Ground Plane (MGP) system with an integrated 6-component balance, a two-position nozzle, boundary layer removal systems, and two independent flow traverse systems. Each flow traverse has a large horizontal box beam and vertical Z-strut that can position the flow traverse accurately within the test volume.
Technical Paper

The BMW AVZ Wind Tunnel Center

2010-04-12
2010-01-0118
The new BMW Aerodynamisches Versuchszentrum (AVZ) wind tunnel center includes a full-scale wind tunnel, "The BMW Windkanal" and an aerodynamic laboratory "The BMW AEROLAB." The AVZ facility incorporates numerous new technology features that provide design engineers with new tools for aerodynamic optimization of vehicles. The AVZ features a single-belt rolling road in the AEROLAB and a five-belt rolling road in the Windkanal for underbody aerodynamic simulation. Each of these rolling road types has distinct advantages, and BMW will leverage the advantages of each system. The AEROLAB features two overhead traverses that can be configured to study vehicle drafting, and both static and dynamic passing maneuvers. To accurately simulate "on-road" aerodynamic forces, a novel collector/flow stabilizer was developed that produces a very flat axial static pressure distribution. The flat static pressure distribution represents a significant improvement relative to other open jet wind tunnels.
Technical Paper

Sound Transmission Loss through Front of Dash and Instrumental Panel

2024-04-09
2024-01-2349
The subsystem of front of dash (FOD) and instrument panel (IP) is a critical path to isolate the powertrain noise and road noise for vehicles. This subsystem mainly consists of sheet metal, dash mats, IP, and the components inside IP such as HVAC and wiring harness. To achieve certain level of cabin quietness, the sound transmission loss performance of this subsystem is usually used as a quantifier. In this paper, the sound transmission loss through the FOD and IP is investigated up to 10kHz, through both acoustic testing and numerical simulation. In the acoustic testing, the subsystem is cut from a vehicle and installed on the wall of two-rooms STL testing suite, with source room being reverberant and receiver room being anechoic. In the testing, various scenarios are measured to understand the contributions from different components.
Journal Article

Scania’s New CD7 Climatic Wind Tunnel Facility for Heavy Trucks and Buses

2016-04-05
2016-01-1614
Scania AB has opened the new CD7 climatic wind tunnel test facility, located at the Scania Technical Center in Södertälje, Sweden. This facility is designed for product development testing of heavy trucks and buses in a range of controllable environments. Having this unique test environment at the main development center enables Scania to test its vehicles in a controlled repeatable environment year round, improving lead times from design to production, producing higher quality and more reliable vehicles, and significantly improves the capability for large vehicle performance research. This state-of-the-art facility provides environmental conditions from -35°C to 50°C with humidity control from 5 to 95 percent. The 13 m2 nozzle wind tunnel can produce wind speeds up to 100 km/h. The dynamometer is rated at 800 kW for the rear axle and 150 kW for the front axle, which also has ±10° yaw capability.
Technical Paper

SAE Low-Frequency Brake Noise Test Procedure

2010-10-10
2010-01-1696
This paper presents the work of the SAE Brake NVH Standards Committee in developing a draft Low-Frequency Brake Noise Test Procedure. The goal of the procedure is to be able to accurately measure noise issues in the frequency range below 900 Hz using a conventional shaft brake noise dynamometer. The tests conducted while evaluating alternative test protocols will be discussed and examined in detail. The unique issues encountered in developing a suitable test procedure for low-frequency noise will be discussed, and the results of tests using both shaft brake dynamometers and chassis dynamometers will be described. The current draft procedure incorporating the knowledge gained from this development effort will be described in detail and conclusions as to its applicability will also be presented
Journal Article

Revised ISO 10844 Test Surface: Technical Principles

2011-05-17
2011-01-1607
ISO has revised the 10844 International Standard for test surfaces used in measurement of exterior vehicle and tire noise emission. The revision has a goal to reduce the track to track sound level variation presently observed by 50%, without changing the mean value. ISO has incorporated improved texture measurement procedures, improved acoustic absorption measurement procedures, and has added measurement procedures for track roughness. In addition, specifications for texture, absorption, roughness, planarity, and asphalt mix were revised or added to recognize improved technical methods and to achieve the goal of variation reduction. The specification development was supported by a construction program where four candidate ISO 10844 tracks were constructed in Japan, France, and the US to verify the technical principles and to validate construction process capability. This paper will address the technical changes and reasons for these changes in the revised ISO 10844.
Journal Article

Progress in Aeroacoustic and Climatic Wind Tunnels for Automotive Wind Noise and Acoustic Testing

2013-04-08
2013-01-1352
There has been significant progress in developing test facilities for automotive wind noise and automotive components since the early 1990s. The test technology is critical to the development of modern vehicles, and essentially every major automotive manufacturer owns and operates their own aeroacoustic wind tunnel, or has rental access to one and conducts a significant amount of wind noise testing. The current status for climatic wind tunnels is that many new CWTs are being defined with acoustic test requirements. These test capabilities in AAWTs and CWTs will continue to enable the development of vehicles with better wind noise attributes, fewer problems with sunroof ‘booming’, and lower noise levels for HVAC and auxiliary systems. In the future, it is expected that the test demand for AAWTs and CWTs with low acoustic background noise will continue to increase as customers expect better automotive products, especially across more of the product line.
Technical Paper

Practical Uses for Road Noise Cancellation

2021-08-31
2021-01-1018
Today’s automotive customers have come to expect luxury and electric vehicles to be quiet and refined pieces of machinery. As customers have come to expect powertrain cancellation in most vehicles today, they are also increasingly looking for a reduction in road noise to improve their overall perception of luxury and electric vehicles. While the field of noise cancellation is ever expanding, several auto makers are exploring the possibility of introducing a real time Road Noise Cancellation (RNC) system to meet these customer expectations. An RNC system can be integrated into the vehicle infotainment system and be utilized to either noticeably reduce or shape the vehicle noise floor. This paper will look at the current traditional Noise and Vibration (N&V) methods of reducing road noise and then also the benefits associated with actively controlling the amount of road noise using an RNC system.
Journal Article

Practical Implementation of the Two-Measurement Correction Method in Automotive Wind Tunnels

2015-04-14
2015-01-1530
In recent years, there has been renewed attention focused on open jet correction methods, in particular on the two-measurement method of E. Mercker, K. Cooper, and co-workers. This method accounts for blockage and static pressure gradient effects in automotive wind tunnels and has been shown by both computations and experiments to appropriately adjust drag coefficients towards an on-road condition, thus allowing results from different wind tunnels to be compared on a more equitable basis. However, most wind tunnels have yet to adopt the method as standard practice due to difficulties in practical application. In particular, it is necessary to measure the aerodynamic forces on every vehicle configuration in two different static pressure gradients to capture that portion of the correction. Building on earlier proof-of-concept work, this paper demonstrates a practical method for implementing the two-measurement procedure and demonstrates how it can be used for production testing.
Technical Paper

New Integrated Electromagnetic and NVH Analyses for Induction Traction Motors for Hybrid and Electric Vehicle Applications

2020-04-14
2020-01-0413
Electric motor whine is one of the main noise sources of hybrid and electric vehicles. Compared with permanent magnetic motors, characterization and prediction of traction induction motor is particularly challenging due to high computational costs to calculate the electro-magnetic (EM) forces as noise source, as well as motor slip and harmonic orders change at different torque/speed operating conditions. Historically, induction motor NVH is designed qualitatively by optimizing motor topology including rotor bar, pole number and slot counts etc. A new integrated electromagnetic and NVH analysis method is developed and successfully validated at all dominant motor orders for an automotive traction motor, which enables quantitative prediction of induction motor N&V performance in early design stage: First, a new equivalent rotor current method is used that significantly reduces the computational time required to calculate the EM force over transient responses.
Technical Paper

NVH Design, Analysis and Optimization of Chevrolet Bolt Battery Electric Vehicle

2018-04-03
2018-01-0994
A multi-stage system level method is used to design, optimize and enhance electric motor NVH performance of General Motors’ Chevrolet Bolt battery electric vehicle (BEV). First, the rotor EM (electromagnetic) design optimizes magnet placement between adjacent poles asymmetrically, along with a pair of small slots stamped near the rotor outer surface to lower torque ripple and radial force. The size and placement of stator slot openings under each pole are optimized to lower torque ripple and radial force. Next, motor stator level FE (Finite Element) analysis and modal test correlation are performed to benchmark the orthotropic stator material properties and accurately predict modal results within 7% error below 2 kHz. Furthermore, tangential and radial EM forces are applied on motor-in-fixture subsystem FE model, which predicts surface vibration and pseudo sound power on the motor housing.
Technical Paper

Multiphysics Simulation of Electric Motor NVH Performance with Eccentricity

2021-08-31
2021-01-1077
With the emphasis of electrification in automotive industry, tremendous efforts are made to develop electric motors with high efficiency and power density, and reduce noise, vibration and harshness (NVH). A multiphysics simulation workflow is used to predict the eccentricity-induced noise for GM’s Bolt EV motor. Both static and dynamic eccentricities are investigated along with axial tilt. Analysis results show that these eccentricities play a critical role in the NVH behavior of the motor assembly. Transient electromagnetic (EM) analysis is performed first by extruding 2D stator and rotor sections to form 3D EM models. Sector model is duplicated to form full 360-degree model. Stator is split into three rotated sections to characterize stator skew, and the skew between two sections of rotor and magnets are also modelled. Sinusoidal current is applied and lumped-sum forces on each stator tooth are computed.
X