Refine Your Search

Topic

Author

Search Results

Journal Article

Vehicle Integration Factors Affecting Brake Caliper Drag

2012-09-17
2012-01-1830
Disc brakes operate with very close proximity of the brake pads and the brake rotor, with as little as a tenth of a millimeter of movement of the pads required to bring them into full contact with the rotor to generate braking torque. It is usual for a disc brake to operate with some amount of residual drag in the fully released state, signifying constant contact between the pads and the rotor. With this contact, every miniscule movement of the rotor pushes against the brake pads and changes the forces between them. Sustained loads on the brake corner, and maneuvers such as cornering, can both produce rotor movement relative to the caliper, which can push it steadily against one or both of the brake pads. This can greatly increase the residual force in the caliper, and increase drag. This dependence of drag behavior on the movement of the brake rotor creates some vehicle-dependent behavior.
Technical Paper

Transient Aerodynamics Simulations of a Passenger Vehicle during Deployment of Rear Spoiler

2024-04-09
2024-01-2536
In the context of vehicle electrification, improving vehicle aerodynamics is not only critical for efficiency and range, but also for driving experience. In order to balance the necessary trade-offs between drag and downforce without significant impact on the vehicle styling, we see an increasing amount of active aerodynamic solutions on high-end passenger vehicles. Active rear spoilers are one of the most common active aerodynamic features. They deploy at high vehicle speed when additional downforce is required [1, 2]. For a vehicle with an active rear spoiler, the aerodynamic performance is typically predicted through simulations or physical testing at different static spoiler positions. These positions range from fully stowed to fully deployed. However, this approach does not provide any information regarding the transient effects during the deployment of the rear spoiler, which can be critical to understanding key performance aspects of the system.
Technical Paper

Thermomechanical Fatigue Crack Growth Simulation in a Turbo-Housing Model Using Nonlinear Fracture Mechanics

2023-04-11
2023-01-0596
Turbocharger housings in internal combustion engines are subjected to severe mechanical and thermal cyclic loads throughout their life-time or during engine testing. The combination of thermal transients and mechanical load cycling results in a complex evolution of damage, leading to thermo-mechanical fatigue (TMF) of the material. For the computational TMF life assessment of high temperature components, the DTMF model can provide reliable TMF life predictions. The model is based on a short fatigue crack growth law and uses local finite-element (FE) results to predict the number of cycles to failure for a technical crack. In engine applications, it is nowadays often acceptable to have short cracks as long as they do not propagate and cause loss of function of the component. Thus, it is necessary to predict not only potential crack locations and the corresponding number of cycles for a technical crack, but also to determine subsequent crack growth or even a possible crack arrest.
Technical Paper

The Influence of Wheel Assembly Non Uniformity on Disc Brake Lateral Runout

2011-09-18
2011-01-2378
The importance of achieving good (low) assembled lateral runout of the brake disc is well recognized in the industry - it is a critical feature for avoiding issues such as wear-induced disc thickness variation and vibration/shudder during braking. Significant efforts and expense has been invested by the industry into reducing disc brake lateral runout. However, wheel assemblies also have some inherent runout, which in turn cause cyclical forces to act on the brake corner during vehicle movement. Despite the stiffness of the wheel bearing (which aligns the brake disc with the caliper and knuckle), these “tire non-uniformity” forces can be sufficient to promote deflection of the assembly that is appreciable compared to typical disc lateral runout tolerances. This paper covers measurements of this phenomenon on three different vehicles (compact, mid-size, and large cars), under a variety of operating conditions such as speed, wheel assembly runout, and wheel assembly balance.
Journal Article

The Honda R&D Americas Scale Model Wind Tunnel

2012-04-16
2012-01-0301
This paper describes the new Honda R&D Americas Scale Model Wind Tunnel (SWT). To help address Honda's ongoing need to improve fuel economy, reduce the driving force of a vehicle, and decrease product development time, the wind tunnel was developed and implemented to achieve high accuracy aerodynamic predictions for product development and a significantly improved capability for vehicle aerodynamics research. The SWT can accommodate model scales up to 50%. The ¾-open jet test section has a top speed of 250 km/h, a 5-belt moving ground plane with a long center belt for proper wake simulation, a test section designed specifically for very low static pressure gradient, three separate dynamic pressure measurement systems for state-of-the-art blockage corrections, and an overhead traverse for specialized measurement activities. This paper describes the decision process that led to the SWT, key commissioning results, and performance validation results with models installed.
Journal Article

The Honda Automotive Laboratories of Ohio Wind Tunnel

2023-04-11
2023-01-0656
The Honda Automotive Laboratories of Ohio (HALO) includes a new aeroacoustic wind tunnel located near Marysville, Ohio that started operations in 2022. This facility provides world-class aerodynamic flow quality and acoustic testing capabilities for the development of both passenger and motorsports vehicles. This closed-return ¾ open jet wind tunnel features a two-position flexible nozzle system with cross sections of 25 m2 and 18 m2, providing wind speeds of up to 250 km/h and 310 km/h, respectively. There is a ±180 degree turntable with boundary layer control systems, and interchangeable single belt and 5-belt moving ground plane (MGP) modules. Extensive applications of acoustic treatment in the test section and throughout the wind tunnel circuit provide a hemi-anechoic test environment and low background noise levels. A temperature control system provides uniform and stable air temperature over an operating environment between 10 °C and 50 °C.
Journal Article

The Ford Rolling Road Wind Tunnel Facility

2023-04-11
2023-01-0654
The Ford Motor Company Rolling Road Wind Tunnel (RRWT) is a state-of-the-art aerodynamic wind tunnel test facility in Allen Park, Michigan. The RRWT has operated since January 2022 and is designed for passenger and motorsport vehicle development. The test facility includes an office area, three secure customer vehicle preparation bays, a garage area, a vehicle frontal area measurement system, and a full-scale ¾ open jet wind tunnel. The wind tunnel features an interchangeable single belt and 5-belt Moving Ground Plane (MGP) system with an integrated 6-component balance, a two-position nozzle, boundary layer removal systems, and two independent flow traverse systems. Each flow traverse has a large horizontal box beam and vertical Z-strut that can position the flow traverse accurately within the test volume.
Technical Paper

The BMW AVZ Wind Tunnel Center

2010-04-12
2010-01-0118
The new BMW Aerodynamisches Versuchszentrum (AVZ) wind tunnel center includes a full-scale wind tunnel, "The BMW Windkanal" and an aerodynamic laboratory "The BMW AEROLAB." The AVZ facility incorporates numerous new technology features that provide design engineers with new tools for aerodynamic optimization of vehicles. The AVZ features a single-belt rolling road in the AEROLAB and a five-belt rolling road in the Windkanal for underbody aerodynamic simulation. Each of these rolling road types has distinct advantages, and BMW will leverage the advantages of each system. The AEROLAB features two overhead traverses that can be configured to study vehicle drafting, and both static and dynamic passing maneuvers. To accurately simulate "on-road" aerodynamic forces, a novel collector/flow stabilizer was developed that produces a very flat axial static pressure distribution. The flat static pressure distribution represents a significant improvement relative to other open jet wind tunnels.
Video

Test Method for Seat Wrinkling and Bagginess

2012-05-22
This study evaluates utilizing an accelerated test method that correlates customer interaction with a vehicle seat where bagginess and wrinkling is produced. The evaluation includes correlation from warranty returns as well as test vehicle results for test verification. Consumer metrics will be discussed within this paper with respect to potential application of this test method, including but not limited to JD Power ratings. The intent of the test method is to aid in establishing appropriate design parameters of the seat trim covers and to incorporate appropriate design measures such as tie downs and lamination. This test procedure was utilized in a Design for Six Sigma (DFSS) project as an aid in optimizing seat parameters influencing trim cover performance using a Design of Experiment approach. Presenter Lisa Fallon, General Motors LLC
Technical Paper

Strain Amount and Strain Path Effects on Instrumented Charpy Toughness of Baked Third Generation Advanced High Strength Steels

2021-04-06
2021-01-0266
Third generation advanced high strength steels (AHSS) that rely on the transformation of austenite to martensite have gained growing interest for implementation into vehicle architectures. Previous studies have identified a dependency of the rate of austenite decomposition on the amount of strain and the associated strain path imposed on the sheet. The rate and amount of austenite transformation can impact the work hardening behavior and tensile properties. However, a deeper understanding of the impact on toughness, and thus crash performance, is not fully developed. In this study, the strain path and strain amounts were systematically controlled to understand the associated correlation to impact toughness in the end application condition (strained and baked). Impact toughness was evaluated using an instrumented Charpy machine with a single sheet v-notch sample configuration.
Journal Article

Sizing Next Generation High Performance Brake Systems with Copper Free Linings

2017-09-17
2017-01-2532
The high performance brake systems of today are usually in a delicate balance - walking the fine line between being overpowered by some of the most potent powertrains, some of the grippiest tires, and some of the most demanding race tracks that the automotive world has ever seen - and saddling the vehicle with excess kilograms of unsprung mass with oversized brakes, forcing significant compromises in drivability with oversized tires and wheels. Brake system design for high performance vehicles has often relied on a very deep understanding of friction material performance (friction, wear, and compressibility) in race track conditions, with sufficient knowledge to enable this razor’s edge design.
Technical Paper

Simulation Methodology to Analyze Overall Induction Heat Treatment Process of a Crank Shaft to Determine Effects on Structural Performance

2020-04-14
2020-01-0506
Steel crankshafts are subjected to an induction heat treatment process for improving the operational life. Metallurgical phase transformations during the heat treatment process have direct influence on the hardness and residual stress. To predict the structural performance of a crankshaft using Computer Aided Engineering (CAE) early in the design phase, it is very important to simulate the complete induction heat treatment process. The objective of this study is to establish the overall analysis procedure, starting from capturing the eddy current generation in the crank shaft due to rotating inductor coils to the prediction of resultant hardness and the induced residual stress. In the proposed methodology, a sequentially coupled electromagnetic and thermal model is developed to capture the resultant temperature distribution due to the rotation of the inductor coil.
Technical Paper

Simple Robust Formulations for Engineers: An Alternate to Taguchi S/N

2020-04-14
2020-01-0604
Robust engineering is an integral part of the quality initiative, Design For Six Sigma (DFSS), in most companies to enable good designs and products for reliability and durability. Taguchi’s signal-to-noise ratio has been considered as a good performance index for robustness for many years. An alternate approach that is direct and simple for measuring robustness is proposed. In this approach, robustness is measured in terms of an augmented output response and it is a composite index of variation and efficiency of a system. This formulation represents an engineering design intent of a product in a statistical sense, so engineers can understand, communicate, and resonate at ease. Robust formulations are illustrated and discussed with case studies for smaller-the-better, nominal-the-best, and dynamic responses. Confirmation runs of optimization show good agreement of the augmented response with the additive predictive models.
Technical Paper

Scavenge Ports Ooptimization of a 2-Stroke Opposed Piston Diesel Engine

2017-09-04
2017-24-0167
This work reports a CFD study on a 2-stroke (2-S) opposed piston high speed direct injection (HSDI) Diesel engine. The engine main features (bore, stroke, port timings, et cetera) are defined in a previous stage of the project, while the current analysis is focused on the assembly made up of scavenge ports, manifold and cylinder. The first step of the study consists in the construction of a parametric mesh on a simplified geometry. Two geometric parameters and three different operating conditions are considered. A CFD-3D simulation by using a customized version of the KIVA-4 code is performed on a set of 243 different cases, sweeping all the most interesting combinations of geometric parameters and operating conditions. The post-processing of this huge amount of data allow us to define the most effective geometric configuration, named baseline.
Journal Article

Scania’s New CD7 Climatic Wind Tunnel Facility for Heavy Trucks and Buses

2016-04-05
2016-01-1614
Scania AB has opened the new CD7 climatic wind tunnel test facility, located at the Scania Technical Center in Södertälje, Sweden. This facility is designed for product development testing of heavy trucks and buses in a range of controllable environments. Having this unique test environment at the main development center enables Scania to test its vehicles in a controlled repeatable environment year round, improving lead times from design to production, producing higher quality and more reliable vehicles, and significantly improves the capability for large vehicle performance research. This state-of-the-art facility provides environmental conditions from -35°C to 50°C with humidity control from 5 to 95 percent. The 13 m2 nozzle wind tunnel can produce wind speeds up to 100 km/h. The dynamometer is rated at 800 kW for the rear axle and 150 kW for the front axle, which also has ±10° yaw capability.
Journal Article

Re-imagining Brake Disc Thermal Fatigue Testing to Relate to Field Use

2022-09-19
2022-01-1163
The validation of brake discs has remained, to this day, heavily reliant on “Thermal Abuse” or “Thermal Cracking” type testing, with many procedures so dated that most engineers active in the industry today cannot even recall the origin of the test. These procedures - of which there are many variants - all share the trait of greatly accelerating durability testing by performing repeated high power (high speed and high deceleration) brake applies to drive huge temperature gradients and internal stress, and often allowing the disc to get very hot, to where the strength of the material from which the disc is constructed is significantly degraded. There is little debate about whether these procedures work; by and large disc durability issues in the field are extremely rare.
Technical Paper

Purge Pump Rotor Dynamics Subjected to Ball Bearing Inner and Outer Race Wear Defects

2020-04-14
2020-01-0403
The purge pump is used to pull evaporative gases from canister and send to engine for combustion in Turbocharged engines. The purge pump with impeller at one end and electric motor at the other end is supported by the ball bearing assembly. A bearing kinematic model to predict forcing function due to defect in ball bearing arrangement, coupled with bearing dynamic model of rotor because of rotating component, is proposed in this paper to get accumulated effect on transmitted force to the purge pump housing. Rotor dynamic of purge pump rotor components only produces certain order forcing responses which can be simulated into the multibody software environment, knowing the ball bearing geometry parameters hence providing stiffness parameter for rotor system.
Journal Article

Practical Implementation of the Two-Measurement Correction Method in Automotive Wind Tunnels

2015-04-14
2015-01-1530
In recent years, there has been renewed attention focused on open jet correction methods, in particular on the two-measurement method of E. Mercker, K. Cooper, and co-workers. This method accounts for blockage and static pressure gradient effects in automotive wind tunnels and has been shown by both computations and experiments to appropriately adjust drag coefficients towards an on-road condition, thus allowing results from different wind tunnels to be compared on a more equitable basis. However, most wind tunnels have yet to adopt the method as standard practice due to difficulties in practical application. In particular, it is necessary to measure the aerodynamic forces on every vehicle configuration in two different static pressure gradients to capture that portion of the correction. Building on earlier proof-of-concept work, this paper demonstrates a practical method for implementing the two-measurement procedure and demonstrates how it can be used for production testing.
Technical Paper

Particulate Characteristics for Varying Engine Operation in a Gasoline Spark Ignited, Direct Injection Engine

2011-04-12
2011-01-1220
The objective of this research is a detailed investigation of particulate sizing and number count from a spark-ignited, direct-injection (SIDI) engine at different operating conditions. The engine is a 549 [cc] single-cylinder, four-valve engine with a flat-top piston, fueled by Tier II EEE. A baseline engine operating condition, with a low number of particulates, was established and repeatability at this condition was ascertained. This baseline condition is specified as 2000 rpm, 320 kPa IMEP, 280 [°bTDC] end of injection (EOI), and 25 [°bTDC] ignition timing. The particle size distributions were recorded for particle sizes between 7 and 289 [nm]. The baseline particle size distribution was relatively flat, around 1E6 [dN/dlogDp], for particle diameters between 7 and 100 [nm], before dropping off to decreasing numbers at larger diameters. Distributions resulting from a matrix of different engine conditions were recorded.
Technical Paper

N&V Component Structural Integration and Mounted Component Durability Implications

2020-04-14
2020-01-1396
Exterior component integration presents competing performance challenges for balanced exterior styling, safety, ‘structural feel’ [1] and durability. Industry standard practices utilize noise and vibration mode maps and source-path-receiver [2] considerations for component mode frequency placement. This modal frequency placement has an influence on ‘structural feel’ and durability performance. Challenges have increased with additional styling content, geometric overhang from attachment points, component size and mass, and sensor modules. Base excitation at component attachment interfaces are increase due to relative positioning of the suspension and propulsion vehicle source inputs. These components might include headlamps, side mirrors, end gates, bumpers and fascia assemblies. Here, we establish basic expectations for the behavior of these systems, and ultimately consolidate existing rationales that are applied to these systems.
X