Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Whole-Body Response to Pure Lateral Impact

2010-11-03
2010-22-0014
The objective of the current study was to provide a comprehensive characterization of human biomechanical response to whole-body, lateral impact. Three approximately 50th-percentile adult male PMHS were subjected to right-side pure lateral impacts at 4.3 ± 0.1 m/s using a rigid wall mounted to a rail-mounted sled. Each subject was positioned on a rigid seat and held stationary by a system of tethers until immediately prior to being impacted by the moving wall with 100 mm pelvic offset. Displacement data were obtained using an optoelectronic stereophotogrammetric system that was used to track the 3D motions of the impacting wall sled; seat sled, and reflective targets secured to the head, spine, extremities, ribcage, and shoulder complex of each subject. Kinematic data were also recorded using 3-axis accelerometer cubes secured to the head, pelvis, and spine at the levels of T1, T6, T11, and L3. Chest deformation in the transverse plane was recorded using a single chestband.
Technical Paper

Test procedures to evaluate vehicle compatibility

2001-06-04
2001-06-0240
Test procedures for evaluating vehicle compatibility were investigated based on accident analysis and crash tests. This paper summarizes the research reported by Japan to the IHRA Compatibility Working Group. Passenger cars account for the largest share of injuries in head-on collisions in Japan and were identified as the first target for tackling vehicle compatibility in Japan. To ascertain situations in collisions between vehicles of different sizes, we conducted crash tests between minicars and large cars, and between small cars and large cars. The deformation and acceleration of the minicar and small car is greater than that of large car. ODB, Overload and MDB tests were performed as procedures for evaluating vehicle compatibility. In overload tests, methods to evaluate the strength of the passenger compartment were examined, and it is found that this test procedure is suitable for evaluating the strength of passenger compartments.
Technical Paper

Study on Haptic Maneuver Guidance by Periodic Knocks on Accelerator Pedal

2015-03-10
2015-01-0039
This study proposes a method for presenting maneuver request information of accelerator pedal to a driver via the accelerator pedal itself. By applying periodic force like vibration on an accelerator pedal, information is transferred to the driver without displacing the accelerator pedal. In this study, the authors focus on a saw-tooth wave as the periodic force. When the saw-tooth-waved force is applied on the accelerator pedal, a human driver feels as if the accelerator pedal is knocked by someone periodically. In addition, information about the quantity of requested maneuver can be transferred by the amplitude of the saw-tooth wave. Based on these facts, the saw-tooth wave is modified and optimized empirically with ten human drivers so that the information of direction is transferred most reliably. In addition, the relationship between the amplitude of the saw-tooth wave and requested quantity of the pedal maneuver that the drivers feel is formulated.
Technical Paper

Simulation Techniques for Determining Motorcycle Controllability Class according to ISO 26262

2018-10-30
2018-32-0060
The ISO 26262 standard specifies the requirement for functional safety of electrical and electronic systems within road vehicles. We have accumulated case studies based on actual riding tests by subjective judgment of expert riders to define a method for determining the controllability class (C class). However, the wide variety of practical traffic environments and vehicle behaviors in case of malfunction make it difficult to evaluate all C classes in actual running tests. Furthermore, under some conditions, actual riding tests may cause unacceptable risks to test riders. In Part 12 Annex C of ISO/DIS 26262, simulation is cited as an example of a technique for comprehensive evaluations by the Controllability Classification Panel. This study investigated the usefulness of mathematical simulations for evaluating the C class of a motorcycle reproducing a malfunction in either the front or rear brakes.
Technical Paper

Simplifying the Structural Design of the Advanced Pedestrian Legform Impactor for Use in Standardized Testing

2018-04-03
2018-01-1049
The advanced Pedestrian Legform Impactor (aPLI) incorporates a number of enhancements for improved lower limb injury prediction capability with respect to its predecessor, the FlexPLI. The aPLI also incorporates a simplified upper body part (SUBP), connected to the lower limb via a mechanical hip joint, that expands the impactor’s applicability to evaluate pedestrian’s lower limb injury risk also in high-bumper cars.As the aPLI has been developed to be used in standardized testing, further considerations on the impactor’s manufacturability, robustness, durability, usability, and repeatability need to be accounted for.. The aim of this study is to define and verify, by means of numerical analysis, a battery of design modifications that may simplify the manufacturing and use of physical aPLIs, without reducing the impactors’ biofidelity. Eight candidate parameters were investigated in a two-step numerical analysis.
Technical Paper

Research on the Evacuation Readiness of Bus Crews and Passengers - Investigation of the Effect of a New Type of Exit

1996-10-01
962210
This research was conducted to propose appropriate emergency exits for bus crews and passengers. We developed the improved emergency exit based on the results of current bus exit performance tests, and investigated its effect on evacuation readiness. Tests employing human subjects were conducted to measure the time required to evacuate using the improved emergency exit. The subjects' psychological responses during evacuation were also studied to identify any evacuation problems. We also carried out tests of group evacuation through windows in a current bus to obtain the relationship between the evacuation time, the number of evacuation subjects, and the number of windows. The results show that the improved emergency exit is effective in improving evacuation readiness. It is clear that there is a positive correlation between the evacuation time, the number of subjects, and the number of windows.
Technical Paper

Research on bus passenger safety in frontal impacts

2001-06-04
2001-06-0210
Guidelines with regard to the body strength of buses have been drawn up in Japan. We now pass to the second step in research to assure the greater safety of bus crews and passengers by launching a study on further reduction of collision injuries to bus occupants. As a way to reduce such passenger injuries, our focus is the optimization of energy absorption, the arrangement of equipment on the passenger seat back, the seat frame construction, mounting and so on. The study was conducted using an experimental method together with FEM computer simulation. The findings from a sled impact test simulating a seat in a bus in a frontal collision are stated as follows. 1.Further consideration should be given to the present conventional ELR two-point seat belt. 2.One way to reduce passenger injury is to optimize the space between seats.
Technical Paper

Research on Severity Class Evaluation Based on Various Crash Situations Involved with Motorcycles for ISO 26262

2016-11-08
2016-32-0057
ISO 26262 was established in 2011 as a functional safety standard for road vehicles. This standard provides safety requirements according to ASIL (Automotive Safety Integrity Level) in order to avoid unreasonable residual risk caused by malfunctioning behavior of electrical and/or electronic systems. The ASIL is determined by considering the estimate of three factors including injury severity. While applicable only to passenger cars at present, motorcycles will be included in the scope of application of ISO 26262 in the next revision. Therefore, our previous study focused on severity class evaluation for motorcycles. A method of classifying injury severity according to vehicle speed was developed on the basis of accident data. In addition, a severity table for motorcycles was created using accident data in representative collision configurations involved with motorcycles in Japan.
Journal Article

Research on Method for Classifying Injury Severity Using Motorcycle Accident Data for ISO 26262

2015-11-17
2015-32-0714
ISO 26262 was established in 2011 as a functional safety standard for passenger cars. In this standard, ASILs (Automotive Safety Integrity Levels) representing safety levels for passenger cars are determined by evaluating the hazardous events associated with each item constituting an electrical and/or electronic safety-related system according to three evaluation criteria including injury severity. On the other hand, motorcycles will be included in the scope of application of ISO 26262 in the next revision. It is expected that a severity evaluation for motorcycles will be needed because motorcycles are clearly different from passenger cars in vehicle mass and structure. Therefore, this study focused on severity class evaluation for motorcycles. A method of classifying injury severity according to vehicle speed was developed on the basis of accident data.
Technical Paper

Relationships Between Occupant Motion and Seat Characteristics in Low-Speed Rear Impacts

1999-03-01
1999-01-0635
Sled tests were conducted with some seats which had different characteristics to understand the relationships between occupant motion and seat characteristics in lowspeed rear impacts. The position of the head restraint and the stiffness distribution of the seatback were selected as parameters expressing seat characteristics. Volunteer’s cervical vertebral motions were photographed with an x-ray cineradiographic system at a speed of 90 frames/sec as well as the visible motions of dummy’s and volunteer’s were recorded. The results indicated the head restraint position and upper seatback stiffness influenced occupant motions. Correlations between visible motions, such as ramping-up, retraction and extension, were also analyzed and some correlations were found.
Technical Paper

Performance Evaluation of Impact Responses of the Sid-Iis Small Side Impact Dummy

1998-05-31
986149
A series of side impact tests have been conducted to evaluate the biofidelity of the latest prototype of a small side impact dummy, SID-II s β+(plus). The tests were lateral impacts for the thorax, shoulder, and pelvis, as well as lateral drops for the head, thorax, abdomen, and pelvis. The test data were compared to the response target corridors that were estimated by scaling the cadaver test data to a smaller occupant. The test results show that the head, should, thorax, abdomen and pelvis of the SID-II s β+ either completely or close to meets the response target corridors, and that its biofidelity has been improved from the previous dummy SID II s B-prototype.
Technical Paper

Parametric Study and Clarification of Determination Factors of Diesel Exhaust Emission Using a Single Cylinder Engine and Model Fuels - JCAP Combustion Analysis Working Group Report Part I

2002-10-21
2002-01-2824
Single cylinder engine testing was carried out to clearly understand the test results of multi-cylinder engines reported by the Diesel WG in JCAP (Japan Clean Air Program) (1), (2), (3) and (4). In this tests, engine specifications such as fuel injection pressure, nozzle hole diameter, turbo-charging pressure, EGR rate, and fuel properties such as 1-, 2-, 3-ring aromatics content, n-,i-paraffins content, and T90 were parametrically changed and their influence on the emissions were studied. PM emission generally increased in each engine condition with increased aromatic contents and T90. In particular, multi ring aromatics brought about large increases in PM regardless of the engine conditions. The influence of fuel properties on NOx emission is smaller than the influence on PM emission. Some other fuels that have various side chain structures of 1-ring aromatics, normal paraffins only and various naphthene contents were also investigated.
Technical Paper

Optimal Specifications for the Advanced Pedestrian Legform Impactor

2017-11-13
2017-22-0014
This study addresses the virtual optimization of the technical specifications for a recently developed Advanced Pedestrian Legform Impactor (aPLI). The aPLI incorporates a number of enhancements for improved lower limb injury predictability with respect to its predecessor, the FlexPLI. It also incorporates an attached Simplified Upper Body Part (SUBP) that enables the impactor’s applicability to evaluate pedestrian’s lower limb injury risk also with high-bumper cars. The response surface methodology was applied to optimize both the aPLI’s lower limb and SUBP specifications, while imposing a total mass upper limit of 25 kg that complies with international standards for maximum weight lifting allowed for a single operator in the laboratory setting. All parameters were virtually optimized considering variable interaction, which proved critical to avoid misleading specifications.
Technical Paper

Numerical Modeling of International Variations in Diesel Spray Combustion with Evaporation Surrogate and Virtual Species Conversion

2017-03-28
2017-01-0582
A methodology for simulating effect of international variations in fuel compositions on spray combustion is proposed. The methodology is validated with spray combustion experiments with real fuels from three different countries. The compositions of those fuels were analyzed through GC×GC and H-NMR. It was found that ignition delay times, flame region and flame luminosity were significantly affected by the compositional variations. For the simulation, an evaporation surrogate consisting of twenty two species, covering basic molecular types and a wide range of carbon numbers, is developed. Each species in the evaporation surrogate is then virtually converted to a reaction surrogate consisting of n-hexadecane, methylcyclohexane and 1,2,4-trimethyl benzene so that combustion reactions can be calculated with a published kinetic model. The virtual species conversion (VSC) is made so as to take over combustion-related properties of each species of evaporation surrogates.
Technical Paper

Modeling Study of Vehicle Emission Impacts on Air Quality - JCAP Air Quality Model Working Group Report

2003-05-19
2003-01-1864
Air Quality Modeling Working Group developed two models to evaluate effects of automobile emission reduction measures on air quality improvement: Urban Air Quality Simulation Model in which secondary aerosol formation processes have been incorporated, and Roadside Air Quality Simulation Model in which micro-scale traffic flow has been taken into consideration. Concretely, a model has been built up for estimating SPM concentration in ambient air in which high concentrated air pollutants have been contained during summer and winter. The model has been built up by using UAM (Urban Airshed Model) as base model, and the following modification has been made to the base model. First, ISSOROPIA (secondary inorganic aerosol equilibrium model) has been added to the base model, and a secondary organic aerosol formation/reaction model (SOA model) has been incorporated into the model.
Technical Paper

Measuring Method of Fuel Consumption for Natural Gas Vehicles

2003-05-19
2003-01-2009
To achieve high-accuracy measurements of fuel consumption in testing on natural gas vehicles, a method for measuring the absolute value of fuel consumption by the gravimetric method using certificated reference weights and an electric platform scale has been developed. By performing a flow-meter test and a chassis dynamometer test using the gravimetric method, the measurement accuracy of the value of fuel flow rate and fuel consumption obtained by the fuel flow meters, carbon balance method, and air-to-fuel ratio method was evaluated. As a result, a highly accurate method for measuring fuel consumption in chassis dynamometer tests has been confirmed.
Technical Paper

Life Cycle Assessment on Automobile Shredder Residue Treatments of a 2002-year End-of-life Vehicle

2001-11-12
2001-01-3724
In order to review improvement of the recycling rate for an end-of-life vehicle, we implemented a life cycle assessment on the three treatment scenarios for automobile shredder residue (ASR): (A) Direct landfill of whole ASR, (B) Landfill after volume reduction and solidification, (C) Landfill of dry-distillation residue after energy recovery. As a result, we confirmed that case C was effective in achieving the numerical targets of the JAMA voluntary action plan for 2002.
Technical Paper

Large Eddy Simulation of Unsteady Flow Around a Formula Car on Earth Simulator

2007-04-16
2007-01-0106
One of the world's largest unsteady turbulence simulations of flow around a formula car was conducted using Large Eddy Simulation (LES) on the Earth Simulator in Japan. The main objective of our study is to investigate the validity of LES for the assessment of vehicle aerodynamics, as an alternative to a conventional wind tunnel measurement or the Reynolds Averaged Navier-Stokes (RANS) simulation. The aerodynamic forces estimated by LES show good agreement with the wind tunnel data (within several percent!) and various unsteady flow features around the car is visualized, which clearly indicate the effectiveness of large-scale LES in the very near future for the computation of flow around vehicles with complex configurations.
Technical Paper

Japanese research activity on future side impact test procedures

2001-06-04
2001-06-0155
This paper summarizes a future side impact test procedure based on the Japanese presentation at the recent IHRA Side Impact WG meeting. Under current Japanese regulations, the MDB specifications and test procedures were determined based on a market study more than ten years ago. Thus, they may not reflect current automobile characteristics, the actual accident situation, and crash test results. In this study (1) the vehicle types, velocity of striking and struck vehicles, body injury regions, causes of injuries, etc., are reviewed with reference to the latest Japanese side impact accident data. The occupant percentages for the non-struck-side, rear seat and for female occupants as well as the injury levels were analyzed. (2) To determine the MDB specifications, based on data from passenger car models registered in 1998, the curb mass, geometry and stiffness were examined. (3) For factorial analysis, side impact tests were performed as for real accidents.
Technical Paper

Japan Clean Air Program (JCAP): Preliminary Modeling Study of Vehicle Emission Impacts on Air Quality

1999-05-03
1999-01-1482
Comparing with the previous Auto/Oil programs, the total plan and current status of the air quality modeling study in JCAP are presented. The total plan of air quality modeling study has the following characteristics: 1) Vehicle emission inventory program is developed by considering the original features of Japan. 2) Not only the urban air quality but also the road sides pollutants dispersion is evaluated. 3) The chemical reaction model for the secondary particulate formations is developed on the basis of the smog chamber experiments. 4) For the cost-effectiveness analysis of vehicle/fuel technologies, the output of the air quality modeling will be combined with the cost data of new vehicle emission reduction technologies As the first step, preliminary modeling studies are conducted to understand the overall tendency of the air quality change toward 2010 in Tokyo urban area.
X