Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Kinetic Measurements of HNCO Hydrolysis over SCR Catalyst

2018-09-10
2018-01-1764
To meet the strict emission regulations for diesel engines, an advanced processing device such as a Urea-SCR (selective catalytic reduction) system is used to reduce NOx emissions. The Real Driving Emissions (RDE) test, which is implemented in the European Union, will expand the range of conditions under which the engine has to operate [1], which will lead to the construction of a Urea-SCR system capable of reducing NOx emissions at lower and higher temperature conditions, and at higher space velocity conditions than existing systems. Simulations are useful in improving the performance of the urea-SCR system. However, it is necessary to construct a reliable NOx reduction model to use for system design, which covers the expanded engine operation conditions. In the urea-SCR system, the mechanism of ammonia (NH3) formation from injected aqueous urea solution is not clear. Thus, it is important to clarify this mechanism to improve the NOx reduction model.
Technical Paper

Heat Pipes with Self-Rewetting Fluids for Space Applications

2008-06-29
2008-01-1954
Self-rewetting fluids, i.e. dilute aqueous alcoholic solutions with unique surface tension behavior, have been proposed as working fluids for terrestrial and space heat pipes. Experiments have been carried out in normal gravity and in low-gravity conditions with tubular heat pipes, thin flat heat pipes for thermal management in electronic devices, and flexible, inflatable and deployable radiator panels for space applications. Self-rewetting heat pipes exhibit, in general, better thermal performances in comparison with water heat pipes. Current developments are focused on self-rewetting brines, studied as candidate potential heat transfer fluids for space applications. Activities are in progress to perform experiments in space with a small technological payload onboard a microsatellite developed by the Italian Space Agency.
X