Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vibration Analysis of Drive Line and Suspension Using Finite Element Models

1993-05-01
931306
Finite element aodels have been developed to analyze drive line and suspension vibration. For the analysis of booming noise, we have addressed the optimization of the differential gear carrier mounting system by using a virtual system and realization of it considering many constraints. To reduce the differential whine noise, a simulation method considering the transmitting error of the differential gear was applied. And we have approached for the subtle arrangements of many structural resonances with detail research of the drive line and suspension. For the reduction of road noise, we adopted the approach of shifting the node of the rear suspension member mode.
Technical Paper

Variable Induction Systems to Improve Volumetric Efficiency at Low and/or Medium Engine Speeds

1986-03-01
860100
A new method of estimating volumetric efficiency has been developed to facilitate parameter studies necessary for designing a Variable Induction System (VIS). The proposed method is based on the application of frequency domain to solve linearized one-dimensional hydrodynamic equations. This method enabled CPU time to be reduced to 1/200 of that required for non-linear calculation in the time domain. Various VISs having sufficient flexibility to ensure practical uses are introduced. Finally, VISs are classified into four groups depending on the pulsation mode. Two examples of VISs are described and tested. Both are found capable of considerably increasing volumetric efficiency at low and medium engine speeds without loss of maximum power.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Technical Paper

Toyota EC-HYMATIC – A New Full Time 4WD System for Automatic Transmission

1989-02-01
890526
Toyota has developed a new full time 4WD system, called “EC-HYMATIC” or Electronically Controlled - HYdraulic Multi-plate clutch Active Traction Intelligent Control. This system permits an automatic torque transfer, depending on driving conditions, for front and rear wheels under control of the speed difference between the two. The system developed consists of a center differential, a speed difference control clutch system employing multi-plate clutch, and a gear set for rear axle drive. The speed difference control clutch system is controlled by a unique electro-hydraulic system using a microcomputer. An extensive use of computer simulations and vehicle test and evaluation has successfully developed an appropriate control strategy for the clutch system. The new 4WD system, EC-HYMATIC, considerably improves handling characteristics, traction performance and stability of a 4WD vehicle.
Technical Paper

Three-Dimensional Simulation of the Flow in a Torque Converter

1991-02-01
910800
This paper describes a simulation study of the internal fluid flow of a torque converter. The study was conducted by using the steady-interaction technique to connect the boundaries between neighboring elements. This technique averages the flow variables in the circumferential direction on the connecting boundary surfaces. A comparison of computational results with experimental data gives an estimate of the accuracy in predicting torque converter performance with this method.
Technical Paper

Thermal Fatigue Life Prediction for Stainless Steel Exhaust Manifold

1998-02-23
980841
This paper describes the application of a life prediction method for stainless steel exhaust manifolds. Examination of the exhaust manifold cracks indicated that many of the failures could be attributed to out-of-phase thermal fatigue due to compressive strains that occur at high temperatures. Therefore, the plastic strain range was used as the crack initiation criteria. In addition, the comparison of the calculated thermal fatigue stress-strain hysteresis to the experimental hysteresis made it clear that it was essential to use the stress-strain data that was obtained through tensile and compression testing by keeping the test specimens at the maximum temperature of the thermal fatigue test mode. A finite element crack prediction method was developed using the aforementioned material data and good results were obtained.
Journal Article

Thermal Analysis of the Exhaust Line Focused on the Cool-Down Process

2014-04-01
2014-01-0655
At the engine restart, when the temperature of the catalytic converter is low, additional fuel consumption would be required to warm up the catalyst for controlling exhaust emission.The aim of this study is to find a thermally optimal way to reduce fuel consumption for the catalyst warm up at the engine restart, by improving the thermal retention of the catalytic converter in the cool down process after the previous trip. To make analysis of the thermal flow around the catalytic converter, a 2-D thermal flow model was constructed using the thermal network method. This model simulates the following processes: 1) heat conduction between the substrate and the stainless steel case, 2) heat convection between the stainless steel case and the ambient air, 3) heat convection between the substrate and the gas inside the substrate, 4) heat generation due to chemical reactions.
Technical Paper

The application of VHDL-AMS multi-domain HV simulation to the power performance and the fuel economy during warming up process

2011-05-17
2011-39-7245
In order to reduce CO2, EV and Hybrid Vehicle (HV) are effective. Those type vehicles have different power train from conventional vehicle. Those new power trains drastically improve their efficiency from conventional vehicle with keeping same or superior power performance. On the other hand, those vehicles have the issue for thermal energy shortage during warming up process. The thermal energy is very large. The thermal energy seriously affect on the fuel economy for HV and the mileage for EV. In this paper, the power performance, the fuel economy and the effect of heat energy recovery from the exhaust gas are discussed for HV. For the power performance, the simulated acceleration time of 0-100km/h was 11.8sec and the measured vehicle time was 11.9sec. The error between simulation and actual measurement result was 1.2%. As for the fuel economy, the energy management using exhaust gas heat exchange system improved 10.3% of the fuel consumption during warming up.
Technical Paper

The Study of Particle Number Reduction Using After-Treatment Systems for a Heavy-Duty Diesel Engine

2004-03-08
2004-01-1423
To reduce ultra fine particle number concentration from a heavy-duty diesel engine, the effects of diesel fuel property and after-treatment systems were studied. The reduction of ultra fine particle number concentration over steady state mode using an 8 liter turbocharged and after-cooled diesel engine was evaluated. PM size distribution was measured by a scanning mobility particle sizer (SMPS). The evaluation used a commercially available current diesel fuel (Sulfur Content: 0.0036 wt%), high sulfur diesel fuel (Sulfur Content: 0.046 wt%) and low sulfur diesel fuel (Sulfur Content: 0.007 wt%). The after-treatment systems were an oxidation catalyst, a wire-mesh type DPF (Diesel Particle Filter) and a wall-flow type catalyzed DPF. The results show that fine particle number concentration is reduced with a low sulfur fuel, an oxidation catalyst, a wire-mesh type DPF (Diesel Particulate Filter) and wall flow type catalyzed DPF, respectively.
Technical Paper

The Study of NOx and PM Reduction Using Urea Selective Catalytic Reduction System for Heavy Duty Diesel Engine

2007-04-16
2007-01-1576
To reduce NOx and Particulate Matter (PM) emissions from a heavy-duty diesel engine, the effects of urea selective catalytic reduction (SCR) systems were studied. Proto type urea SCR system was composed of NO oxidation catalyst, SCR catalyst and ammonia (NH3) reduction catalyst. The NOx reduction performance of urea SCR system was improved by a new zeolite type catalyst and mixer for urea distribution at the steady state operating conditions. NOx and PM reduction performance of the urea SCR system with DPF was evaluated over JE05 mode of Japan. The NOx reduction efficiency of the urea SCR catalyst system was 72% at JE05 mode. The PM reduction efficiency of the urea SCR catalyst system with DPF was 93% at JE05 mode. Several kinds of un-regulated matters were detected including NH3 and N2O leak from the exhaust gas. It is necessary to have further study for detailed measurements for un-regulated emissions from urea solution.
Technical Paper

The Study of NOx Reduction Using Plasma-assisted SCR System for a Heavy Duty Diesel Engine

2011-04-12
2011-01-0310
To reduce NOx emissions from a heavy-duty engine at low exhaust temperature conditions, the plasma-assisted SCR (Selective Catalytic Reduction) system was evaluated. The plasma-assisted SCR system is mainly composed of an ammonia gas supply system and a plasma reactor including a pellet type SCR catalyst. The preliminary test with simulated gases of diesel exhaust showed an improvement in the NOx reduction performance by means of the plasma-assisted SCR system, even below 150°C conditions. Furthermore, NOx reduction ratio was improved up to 77% at 110°C with increase in the catalyst volume. Also NOx emissions from a heavy-duty diesel engine over the transient test mode in Japan (JE05) were reduced by the plasma-assisted SCR system. However, unregulated emissions, e.g., aldehydes, were increased with the plasma environment. This paper reports the advantages and disadvantages of the plasma-assisted SCR system for a heavy-duty diesel engine.
Technical Paper

The New Toyota 1.2-Liter ESTEC Turbocharged Direct Injection Gasoline Engine

2015-04-14
2015-01-1268
Toyota Motor Corporation is developing a series of engines belonging to its ESTEC (Economy with Superior Thermal Efficient Combustion) development concept. This paper describes the development of 8NR-FTS after the subsequent launch of the 2.0-liter DI Turbocharged 8AR-FTS. 8NR-FTS is a 1.2-liter inline 4-cylinder spark ignition downsized turbocharged direct injection (DI) gasoline engine. By following the same basic concepts as 8AR-FTS engine [1], the 8NR-FTS incorporates various fuel efficient technologies such as a cylinder head with an integrated exhaust manifold, the Atkinson cycle using the center-spooled variable valve timing with mid-position lock system (VVT-iW), and intensified in-cylinder turbulence to achieve high-speed combustion.
Technical Paper

The New 2.4-Liter Slant Engine, 2TZ-FE, for the Toyota Previa

1990-09-01
901717
This paper describes a new 2.4-liter 16-valve in-line four-cylinder engine, 2TZ-FE, which has been mounted horizontally on a new minivan, the TOYOTA PREVIA. This engine has the TOYOTA original compact 4-valve DOHC system (scissors gear mechanism), and TOYOTA's newest technologies, such as 75 deg. slant cylinder and Separated accessory Drive System. The compact configuration reduces the height of this engine to only 44Omm (17.3-inches). Engine location is under the flat floor on the midship rear-wheel-drive vehicle and allows the PREVIA to have a spacious cabin with walkthrough. Its high performance, 103kW at 500Orpm and 209Nm at 4000rpm, has been achieved through updated technologies, such as: Knock Controll System (KCS), well studied intake system and exhaust manifold which is made of stainless steel double pipe. At the same time, high reliability and quietness have been achieved for the 2TZ-FE by TOYOTA's updated technologies.
Technical Paper

The High-Speed In-Vehicle Network of Integrated Control System for Vehicle Dynamics

1991-02-01
910463
This paper describes the preliminary development of an on-board integration network for vehicle dynamics. The underlying philosophy is explained and the basic requirements are set forth. A design conforming to these requirements is presented and the experiments conducted to optimise the physical layer are described. An original token passing protocol is proposed for the access method and evaluated in comparison with the contention method by means of a specially devised simulation system.
Technical Paper

The Development of Integrated CAD/CAM System on Engineering Workstation

1987-04-07
870927
This paper describes an integrated CAD/CAM system on an EWS. This system is based on the CAD and CAM systems on large scale computers which have been developed and put into practical use in Toyota Motor Corporation. All the functions of these systems are compactly integrated into this system. We have established the following technologies through its development. (1) A method for construction of data structure common to CAD and CAM (2) A database structure that enables efficient data retrievals Owing to these technologies, a non-expensive integrated CAD/CAM system on an EWS has been developed, which can be introduced in small-sized parts suppliers. This system has already been put into practical use since early 1988, and used by more than ten suppliers. Much more suppliers are also planning to introduce this system in near future.
Technical Paper

The Color Specification of Surrogate Roadside Objects for the Performance Evaluation of Roadway Departure Mitigation Systems

2018-04-03
2018-01-0506
Roadway departure mitigation systems for helping to avoid and/or mitigate roadway departure collisions have been introduced by several vehicle manufactures in recent years. To support the development and performance evaluation of the roadway departure mitigation systems, a set of commonly seen roadside surrogate objects need to be developed. These objects include grass, curbs, metal guardrail, concrete divider, and traffic barrel/cones. This paper describes how to determine the representative color of these roadside surrogates. 24,762 locations with Google street view images were selected for the color determination of roadside objects. To mitigate the effect of the brightness to the color determination, the images not in good weather, not in bright daylight and under shade were manually eliminated. Then, the RGB values of the roadside objects in the remaining images were extracted.
Technical Paper

The Analysis and Mechanism of Engine ‘Intake Rumbling Noise’

1990-09-01
901755
This report relates to that kind of rumble generated in the passenger compartment during acceleration which is caused by intake noise. The rumble is a rough, unpleasant noise that comes into the passenger compartment during acceleration. This noise was reported to be caused by the resonant bending vibration of the crankshaft. However, the writer and associates found that intake noise from the air inlet could also cause the rumble in the passenger compartment as reported herein. By a modal analysis of the air column vibration generated in the inlet system parts and analysis of the air column vibration response to the force input from each cylinder, the writer and associates determined that the standing wave generated in the surge tank was the cause of the rumble. By modifying the shapes of surge tank models for computer simulation that had been used in predicting booming noise, etc., it became possible to predict rumble level due to intake noise through calculation.
Technical Paper

Study on Haptic Maneuver Guidance by Periodic Knocks on Accelerator Pedal

2015-03-10
2015-01-0039
This study proposes a method for presenting maneuver request information of accelerator pedal to a driver via the accelerator pedal itself. By applying periodic force like vibration on an accelerator pedal, information is transferred to the driver without displacing the accelerator pedal. In this study, the authors focus on a saw-tooth wave as the periodic force. When the saw-tooth-waved force is applied on the accelerator pedal, a human driver feels as if the accelerator pedal is knocked by someone periodically. In addition, information about the quantity of requested maneuver can be transferred by the amplitude of the saw-tooth wave. Based on these facts, the saw-tooth wave is modified and optimized empirically with ten human drivers so that the information of direction is transferred most reliably. In addition, the relationship between the amplitude of the saw-tooth wave and requested quantity of the pedal maneuver that the drivers feel is formulated.
Technical Paper

Study of Ignition System for Demand Voltage Reduction

2015-04-14
2015-01-0777
Improving the engine efficiency to respond to climate change and energy security issues is strongly required. In order to improve the engine efficiency, lower fuel consumption, and enhance engine performance, OEMs have been developing high compression ratio engines and downsized turbocharged engines. However, higher compression ratio and turbocharging cause cylinder pressure to increase, which in turn increases the demand voltage for ignition. To reduce the demand voltage, a new ignition system is developed that uses a high voltage Zener diode to maintain a constant output voltage. Maintaining a constant voltage higher than the static breakdown voltage helps limit the amount of overshoot produced during the spark event. This allows discharge to occur at a lower demand voltage than with conventional spark ignition systems. The results show that the maximum reduction in demand voltage is 3.5 kV when the engine is operated at 2800 rpm and 2.6 MPa break mean effective pressure.
X