Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Whole-Body Response to Pure Lateral Impact

2010-11-03
2010-22-0014
The objective of the current study was to provide a comprehensive characterization of human biomechanical response to whole-body, lateral impact. Three approximately 50th-percentile adult male PMHS were subjected to right-side pure lateral impacts at 4.3 ± 0.1 m/s using a rigid wall mounted to a rail-mounted sled. Each subject was positioned on a rigid seat and held stationary by a system of tethers until immediately prior to being impacted by the moving wall with 100 mm pelvic offset. Displacement data were obtained using an optoelectronic stereophotogrammetric system that was used to track the 3D motions of the impacting wall sled; seat sled, and reflective targets secured to the head, spine, extremities, ribcage, and shoulder complex of each subject. Kinematic data were also recorded using 3-axis accelerometer cubes secured to the head, pelvis, and spine at the levels of T1, T6, T11, and L3. Chest deformation in the transverse plane was recorded using a single chestband.
Technical Paper

Virtual Occupant Model with Active Joint Torque Control for Muscular Reflex

2018-04-03
2018-01-1316
Riding comfort on the seat is one of the important factors for vehicle comfort. To analyze riding comfort, there were some models for predicting human vibrations in the past studies. On the other hand, it is strongly affected by human body motion caused by vehicle excitation during driving especially low frequency, but it is difficult to predict human motion due to an unclear mechanism of muscle reflex. The purpose of this study is to construct virtual riding comfort testing simulation based on virtual prototyping of the seat. In this study, a virtual occupant model that predicts occupant motion on the seat against external excitation including muscle reflex for maintaining sitting posture constructed. The whole body was modeled as 15 segments biomechanical model (1D) with wobbling mass. Each joint has passive elastic torque and damping torque springs. Human body surface was modeled as rigid shape.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Journal Article

Unregulated Harmful Substances in Exhaust Gas from Diesel Engines

2009-06-15
2009-01-1870
The volatile organic compounds (VOC) from diesel engines, including formaldehyde and benzene, are concerned and remain as unregulated harmful substances. The substances are positively correlated with THC emissions, but the VOC and aldehyde compounds at light load or idling conditions are more significant than THC. When coolant temperatures are low at light loads, there are notable increases in formaldehyde and acetaldehyde, and with lower coolant temperatures the increase in aldehydes is more significant than the increase in THC. When using ultra high EGR so that the intake oxygen content decreases below 10%, formaldehyde, acetaldehyde, benzene, and 1,3-butadiene increase significantly while smokeless and ultra low Nox combustion is possible.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Ultra-Clean Combustion Technology Combining a Low-Temperature and Premixed Combustion Concept for Meeting Future Emission Standards

2001-03-05
2001-01-0200
Experimental investigations were conducted with a direct-injection diesel engine to improve exhaust emission, especially nitrogen oxide (NOx) and particulate matter (PM), without increasing fuel consumption. As a result of this work, a new combustion concept, called Modulated Kinetics (MK) combustion, has been developed that reduces NOx and smoke simultaneously through low-temperature combustion and premixed combustion, respectively. The characteristics of a new combustion concept were investigated using a single cylinder DI diesel engine and combustion photographs. The low compression ratio, EGR cooling and high injection pressure was applied with a multi-cylinder test engine to accomplish premixed combustion at high load region. Combustion chamber specifications have been optimized to avoid the increase of cold-start HC emissions due to a low compression ratio.
Technical Paper

Turbulence and Cycle-by-Cycle Variation of Mean Velocity Generated by Swirl and Tumble Flow and Their Effects on Combustion

1995-02-01
950813
Combinations of swirl flow and tumble flow generated by 13 types of swirl control valve were tested by using both impulse steady flow rig and LDV. Comparison between the steady flow characteristics and the result of LDV measurement under motoring condition shows that tumble flow generates turbulence in combustion chamber more effectively than swirl flow does, and that swirling motion reduces the cycle by cycle variation of mean velocity in combustion chamber which tends to be generated by tumbling motion. Performance tests are also carried out under the condition of homogeneous charge. Tumble flow promotes the combustion speed more strongly than expected from its turbulence intensity measured by LDV. It is also shown that lean limit air fuel ratio does not have a strong relation with cycle variation of mean velocity but with turbulence intensity.
Technical Paper

Trends in Vehicle Information Displays in the Multimedia Era

1998-10-19
98C035
Flat panel displays for automobiles are facing a new era with the development of navigation systems. As navigation systems become more important as driver's assistance devices, development of birds-eye-view and 3D displays continues, as well as improvements for larger display screens and higher mounting positions. In response to the progress of mobile multimedia technologies, demands for larger display screens and larger aspect ratios have been increasing. Significance for improvements to anti-glare features or view angles has increased as they provide better visibility and the increase layout options. The use of human machine information interaction, which interfaces visual, audio and tactile senses, makes it possible to realize safer, more convenient and comfortable multimedia era vehicle
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Technical Paper

Traffic accidents in rural area and assistance system for traffic safety

2001-06-04
2001-06-0243
An investigation based on human visual search functions was conducted into the causative factors of traffic accidents at clear intersections in rural areas. The results indicated that it is difficult for drivers to detect a vehicle traveling on a collision course because the vehicle remains in the same position in the driver's visual field. Two systems are introduced to assist drivers' visual searches. One system uses an image processing technique, and the other utilizes DGPS and IVC techniques. This paper presents the development of the assistance system.
Technical Paper

Tractive Torque Steer for On-Center Stability1 Handling Augmentation with Controlling Differential Gear for Large-Sized Vehicles - A Comparison with Passive Read-Axle Steer

1991-11-01
912688
The running direction of a vehicle can be controlled by not only wheel steer but also torque steer. This paper introduces the tractive torque steer effect produced by a newly developed electropneumatic control system, the limited-slip differential for large-sized vehicles. This system enhances the vehicle's running stability and controllability by controlling the tractive force of the drive axle. The tractive force maintains a stable running course against disturbances such as road roughness and wind gusts, thereby enhancing the steering response and providing a better feeling of handling to the driver. The system also improves mobility. especially on low-μ roads. It is expected that a single axle equipped with this system will exhibit good performance comparable to that of tandem axle.
Technical Paper

Total Gas/Effective Fuel Ratio Predicts Coast Surge in Emission-Control Vehicles

1980-06-01
800827
In the course of developing a low-emission manual transmission vehicle, coast surge in the fore-and-aft direction resulting from the installation of certain emission-control devices was sometimes experienced immediately after the initiation of vehicle deceleration. Our investigation revealed that this vehicle surge was caused by combustion irregularities in a sequence of combustion-misfire-intense combustion events occurring every several cycles. A new combustibility standard. Gt/Feff, defined as the ratio of total cylinder mixture weight Gt to effective fuel weight Feff, was found to predict combustibility and irregular combustion over the entire mixture range. As a result, driveability during deceleration was improved by modifying key emission-control components.
Technical Paper

Three-Dimensional Computation of the Effects of the Swirl Ratio in Direct-Injection Diesel Engines on NOx and Soot Emissions

1996-05-01
961125
Three-dimensional computation has been applied to analyze combustion and emission characteristics in direct-injection diesel engines. A computational code called TurboKIVA was used to investigate the effects of the swirl ratio, one of the fundamental factors related to combustion control, on combustion characteristics and NOx and soot emissions. The code was first modified to calculate soot formation and oxidation and the precise behavior of fuel drops on the combustion chamber wall. As a result of improving calculation accuracy, good agreement was obtained between the measured and predicted pressure, heat release rate and NOx and soot emissions. Using this modified version of TurboKIVA, the effects of the swirl ratio on NOx and soot emissions were investigated. The computational results showed that soot emissions were reduced with a higher swirl ratio. However, a further increase in the swirl ratio produced greater soot emissions.
Technical Paper

Thermal Fatigue Life of Exhaust Manifolds Predicted by Simulation

2002-03-04
2002-01-0854
A combined computational fluid dynamics (CFD) and finite element (FE) analysis approach has been developed to simulate in the early stages of design the temperature distribution and estimate the thermal fatigue life of an engine exhaust manifold. To simulate the temperature distribution under actual operating conditions, we considered the external and internal flow fields. Digital mock-ups of the vehicle and engine were used to define the geometry of the engine compartment. External-air-flow simulation using in-house CFD code was used to predict the flow fields in the engine compartment and the heat transfer coefficients between the air and the exhaust manifold wall at various vehicle speeds. Unsteady-gas-flow calculation using the STAR-CD thermal- fluids analysis code was to predict the heat transfer coefficients between the exhaust gas and the manifold wall under various operating conditions.
Technical Paper

The Wear Mechanism of Piston Rings and Cylinder Liners Under Cooled-EGR Condition and the Development of Surface Treatment Technology for Effective Wear Reduction

2005-04-11
2005-01-1655
The superior fuel economy of diesel engines compared to gasoline engines is favorable in reducing carbon dioxide (CO2) emissions. On the other hand, the reductions in nitrogen oxides (NOx) and particulate matter (PM) emissions are technically difficult, thus the improvement in the emission reduction technologies is important. Although the cooled exhaust gas recirculation (cooled-EGR) is the effective method to reduce NOx emissions, it is known to have durability and reliability problems, especially of the increased wear of piston rings and cylinder liners. Therefore, the degree of cooling and amount of EGR are both limited. To apply the cooled-EGR more effectively, the wear reduction technology for such components are indispensable. In this study, the negative effects of cooled-EGR on the wear are quantified by using a heavy-duty diesel engine, and its wear mechanism is identified.
Technical Paper

The Visualization and Its Analysis of Combustion Flame in a DI Diesel Engine

1998-02-23
980141
Since in-cylinder flame temperature has a direct effect on an engine's NOx characteristics, these phenomena have been studied in detail in a DI diesel engine using a newly developed method allowing the in-cylinder temperature distribution to be measured by the two color method. The flame light introduced from the visualized combustion chamber of the engine is divided into two colors by filters. The images of combustion phenomena using the two wavelengths are recorded with a framing streak camera which includes a CCD camera. The flame temperature is immediately calculated by a computer using two color images from the CCD camera. A parameter study was then carried out to determine the influence of intake valve number of the engine, and fuel injection rate (pilot injection) on the in-cylinder temperature distribution.
Technical Paper

The Turbocharged 2.8 Liter Engine for the Datsun 280ZX

1982-02-01
820442
Nissan’s new 2.8 liter in-line 6-cylinder turbocharged engine was developed for Che Datsun 280ZX in order to achieve higher performance and improved fuel economy. The Electronic Concentrated Engine Control System (ECCS), controlled by microprocessor, is provided for this 2.8 liter turbocharged engine. ECCS controls fuel injection, ignition timing, EGR rate and idling speed. It solved the problems related to power and fuel economy by optimizing the control parameters. Further, this system contains a barometric pressure compensator and a detonation controller; thus, the performance of this engine is efficient over a wide range of circumstances and fuel octane ratings. During the development of the engine, computer simulation was employed to predict engine performance and select turbocharger size, valve timing and other important factors.
Technical Paper

The Study of Particle Number Reduction Using After-Treatment Systems for a Heavy-Duty Diesel Engine

2004-03-08
2004-01-1423
To reduce ultra fine particle number concentration from a heavy-duty diesel engine, the effects of diesel fuel property and after-treatment systems were studied. The reduction of ultra fine particle number concentration over steady state mode using an 8 liter turbocharged and after-cooled diesel engine was evaluated. PM size distribution was measured by a scanning mobility particle sizer (SMPS). The evaluation used a commercially available current diesel fuel (Sulfur Content: 0.0036 wt%), high sulfur diesel fuel (Sulfur Content: 0.046 wt%) and low sulfur diesel fuel (Sulfur Content: 0.007 wt%). The after-treatment systems were an oxidation catalyst, a wire-mesh type DPF (Diesel Particle Filter) and a wall-flow type catalyzed DPF. The results show that fine particle number concentration is reduced with a low sulfur fuel, an oxidation catalyst, a wire-mesh type DPF (Diesel Particulate Filter) and wall flow type catalyzed DPF, respectively.
Technical Paper

The Study of NOx and PM Reduction Using Urea Selective Catalytic Reduction System for Heavy Duty Diesel Engine

2007-04-16
2007-01-1576
To reduce NOx and Particulate Matter (PM) emissions from a heavy-duty diesel engine, the effects of urea selective catalytic reduction (SCR) systems were studied. Proto type urea SCR system was composed of NO oxidation catalyst, SCR catalyst and ammonia (NH3) reduction catalyst. The NOx reduction performance of urea SCR system was improved by a new zeolite type catalyst and mixer for urea distribution at the steady state operating conditions. NOx and PM reduction performance of the urea SCR system with DPF was evaluated over JE05 mode of Japan. The NOx reduction efficiency of the urea SCR catalyst system was 72% at JE05 mode. The PM reduction efficiency of the urea SCR catalyst system with DPF was 93% at JE05 mode. Several kinds of un-regulated matters were detected including NH3 and N2O leak from the exhaust gas. It is necessary to have further study for detailed measurements for un-regulated emissions from urea solution.
Technical Paper

The Study of NOx Reduction Using Plasma-assisted SCR System for a Heavy Duty Diesel Engine

2011-04-12
2011-01-0310
To reduce NOx emissions from a heavy-duty engine at low exhaust temperature conditions, the plasma-assisted SCR (Selective Catalytic Reduction) system was evaluated. The plasma-assisted SCR system is mainly composed of an ammonia gas supply system and a plasma reactor including a pellet type SCR catalyst. The preliminary test with simulated gases of diesel exhaust showed an improvement in the NOx reduction performance by means of the plasma-assisted SCR system, even below 150°C conditions. Furthermore, NOx reduction ratio was improved up to 77% at 110°C with increase in the catalyst volume. Also NOx emissions from a heavy-duty diesel engine over the transient test mode in Japan (JE05) were reduced by the plasma-assisted SCR system. However, unregulated emissions, e.g., aldehydes, were increased with the plasma environment. This paper reports the advantages and disadvantages of the plasma-assisted SCR system for a heavy-duty diesel engine.
X