Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Validation of the Localized Fire Test Method for On-Board Hydrogen Storage Systems

2014-04-01
2014-01-0421
The localized fire test provided in the Global Technical Regulation for Hydrogen Fuel Cell Vehicles gives two separate test methods: the ‘generic installation test - Method 1′ and the ‘specific vehicle installation test - Method 2′. Vehicle manufacturers are required to apply either of the two methods. Focused on Method 2, the present study was conducted to determine the characteristics and validity of Method 2. Test results under identical burner flame temperature conditions and the effects of cylinder protection covers made of different materials were compared between Method 1 and Method 2.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

The Study of Particle Number Reduction Using After-Treatment Systems for a Heavy-Duty Diesel Engine

2004-03-08
2004-01-1423
To reduce ultra fine particle number concentration from a heavy-duty diesel engine, the effects of diesel fuel property and after-treatment systems were studied. The reduction of ultra fine particle number concentration over steady state mode using an 8 liter turbocharged and after-cooled diesel engine was evaluated. PM size distribution was measured by a scanning mobility particle sizer (SMPS). The evaluation used a commercially available current diesel fuel (Sulfur Content: 0.0036 wt%), high sulfur diesel fuel (Sulfur Content: 0.046 wt%) and low sulfur diesel fuel (Sulfur Content: 0.007 wt%). The after-treatment systems were an oxidation catalyst, a wire-mesh type DPF (Diesel Particle Filter) and a wall-flow type catalyzed DPF. The results show that fine particle number concentration is reduced with a low sulfur fuel, an oxidation catalyst, a wire-mesh type DPF (Diesel Particulate Filter) and wall flow type catalyzed DPF, respectively.
Technical Paper

The Study of NOx and PM Reduction Using Urea Selective Catalytic Reduction System for Heavy Duty Diesel Engine

2007-04-16
2007-01-1576
To reduce NOx and Particulate Matter (PM) emissions from a heavy-duty diesel engine, the effects of urea selective catalytic reduction (SCR) systems were studied. Proto type urea SCR system was composed of NO oxidation catalyst, SCR catalyst and ammonia (NH3) reduction catalyst. The NOx reduction performance of urea SCR system was improved by a new zeolite type catalyst and mixer for urea distribution at the steady state operating conditions. NOx and PM reduction performance of the urea SCR system with DPF was evaluated over JE05 mode of Japan. The NOx reduction efficiency of the urea SCR catalyst system was 72% at JE05 mode. The PM reduction efficiency of the urea SCR catalyst system with DPF was 93% at JE05 mode. Several kinds of un-regulated matters were detected including NH3 and N2O leak from the exhaust gas. It is necessary to have further study for detailed measurements for un-regulated emissions from urea solution.
Technical Paper

The Study of NOx Reduction Using Plasma-assisted SCR System for a Heavy Duty Diesel Engine

2011-04-12
2011-01-0310
To reduce NOx emissions from a heavy-duty engine at low exhaust temperature conditions, the plasma-assisted SCR (Selective Catalytic Reduction) system was evaluated. The plasma-assisted SCR system is mainly composed of an ammonia gas supply system and a plasma reactor including a pellet type SCR catalyst. The preliminary test with simulated gases of diesel exhaust showed an improvement in the NOx reduction performance by means of the plasma-assisted SCR system, even below 150°C conditions. Furthermore, NOx reduction ratio was improved up to 77% at 110°C with increase in the catalyst volume. Also NOx emissions from a heavy-duty diesel engine over the transient test mode in Japan (JE05) were reduced by the plasma-assisted SCR system. However, unregulated emissions, e.g., aldehydes, were increased with the plasma environment. This paper reports the advantages and disadvantages of the plasma-assisted SCR system for a heavy-duty diesel engine.
Technical Paper

Test procedures to evaluate vehicle compatibility

2001-06-04
2001-06-0240
Test procedures for evaluating vehicle compatibility were investigated based on accident analysis and crash tests. This paper summarizes the research reported by Japan to the IHRA Compatibility Working Group. Passenger cars account for the largest share of injuries in head-on collisions in Japan and were identified as the first target for tackling vehicle compatibility in Japan. To ascertain situations in collisions between vehicles of different sizes, we conducted crash tests between minicars and large cars, and between small cars and large cars. The deformation and acceleration of the minicar and small car is greater than that of large car. ODB, Overload and MDB tests were performed as procedures for evaluating vehicle compatibility. In overload tests, methods to evaluate the strength of the passenger compartment were examined, and it is found that this test procedure is suitable for evaluating the strength of passenger compartments.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Technical Paper

Study of 2-LEG NOx Storage-Reduction Catalyst System for HD Diesel Engine

2006-04-03
2006-01-0211
A 2-LEG NOx Storage-Reduction (NSR) catalyst system is one of potential after-treatment technology to meet stringent NOx and PM emissions standards as Post New Long Term (Japanese 2009 regulation) and US'10. Concerning NOx reduction using NSR catalyst, a secondary fuel injection is necessary to make fuel-rich exhaust condition during the NOx reduction, and causes its fuel penalty. Since fuel injected in the high-temperature (∼250 degrees Celsius) exhaust instantly reacts with oxygen in common diesel exhaust, the proportion of fuel consumption to reduce the NOx stored on NSR catalyst is relatively small. A 2-LEG NSR catalyst system has the decreasing exhaust flow mechanism during NOx reduction, and the potential to improve the NOx reduction and fuel penalty. Therefore, this paper studies the 2-LEG NSR catalyst system. The after-treatment system consists of NSR catalysts, a secondary fuel injection system, flow controlled valves and a Catalyzed Diesel Particulate Filter (CDPF).
Journal Article

Prediction of Spray Behavior in Injected by Urea SCR Injector and the Reaction Products

2017-10-08
2017-01-2375
In the urea SCR system, urea solution is injected by injector installed in the front stage of the SCR catalyst, and NOx can be purified on the SCR catalyst by using NH3 generated by the chemical reaction of urea. NH3 is produced by thermolysis of urea and hydrolysis of isocyanic acid after evaporation of water in the urea solution. But, biuret and cyanuric acid which may cause deposit are sometimes generated by the chemical reactions without generating NH3. Spray behavior and chemical reaction of urea solution injected into the tail-pipe are complicated. The purpose of this study is to reveal the spray behavior and NH3 generation process in the tail-pipe, and to construct the model capable of predicting those accurately. In this report, the impingement spray behavior is clarified by scattered light method in high temperature flow field. Liquid film adhering to the wall and deposit generated after evaporation of water from the liquid film are photographed by the digital camera.
Technical Paper

Prediction of Oil Dilution by Post-injection in DPF Regeneration Mode

2019-12-19
2019-01-2354
This work investigated the mechanism of oil dilution by post injection to remove accumulated particulate matter on the diesel particulate filter of diesel engines. We developed a model to simulate post injection spray under low ambient gas pressure conditions. The model can predict the quantity of fuel mass adhered on the cylinder wall. The adhered fuel enters oil sump through the piston ring and cause oil dilution. The fuel in diluted oil evaporates during normal engine operations. We focus on the mechanism of fuel evaporation from diluted oil. The effects of engine speed and oil temperature on the evaporation were investigated. The results showed that the fuel evaporation rate increases with increasing engine speed and oil temperature. Furthermore, we developed an empirical model to predict the fuel evaporation rate of diluted oil through regression analysis with measured data.
Technical Paper

Potential of Nanoparticle Formation by Vehicles

2006-04-03
2006-01-0622
For the better understanding of nanoparticles observed on the rode side, adding to the emission test on the chassis dynamometer and engine dynamometer test, possible factors for formation of nanoparticles are investigated. As other possible factors, cold starting of transient test cycle, blow-by gas from heavy duty diesel engine without a positive crankcase ventilation, exhaust braking, and plume mixing of vehicle exhausts were investigated. Nuclei mode particles under the transient test cycles formed during fuel cut period, fuel enrichment period and idling period. Concentration of nuclei mode particles during the idling period are depends on exhaust temperature. The higher exhaust temperature courses the lower number concentration but variation range is within twice. Emission rate of nanoparticles from blow-by gas is one thousandth of tail pipe emissions rate and was found to be negligible.
Technical Paper

Numerical Simulation and Experimental Observation of Coolant Flow Around Cylinder Liners in V-8 Engine

1988-02-01
880109
In this paper, the flow patterns and velocity distributions of coolant flow around cylinder liners of diesel engine are studied by numerical calculation and experimental observation. The experiment is carried out by oil film method and direct observation with a transparent acrylic cylinder liner. The calculation is performed with the 3-dimensional model by FEM for fluid flow. The motion of coolant flow by calculation corresponds with the result by oil film method and direct observation with transparent cylinder liner. The visualization of the 3-dimensional calculation gives a good understanding about motion of coolant flow and pressure distribution in water chamber. This method is applied to improve the coolant flow with the stagnation around cylinder liner. The effect of improved design is confirmed by experiment. That is, there are no stagnations in the flow around cylinder liners.
Technical Paper

Noise-Generating Mechanism and Noise Reduction of Reciprocating Air Compressor for Heavy Duty Vehicles

2007-05-15
2007-01-2374
The noise-generating mechanism of a reciprocating air compressor for heavy duty vehicles during idling was investigated. It was elucidated that the gear rattling noise of the air compressor drive gear train caused by the negative value of the air compressor drive torque was a major noise source. To completely suppress the gear rattling phenomenon, a new loading device with an air cylinder that cancels the negative value of the air compressor drive torque was fabricated. When the loading device was worked, the impulsive sound level was reduced to 10 dB(A). It was found that the impulsive sound level during gear rattling is closely related to the difference in gear teeth velocity between the crankshaft gear and the air compressor drive gear, as one of the characteristics that are needed to obtain a guide for carrying out estimations in the calculation simulation.
Technical Paper

Noise Reduction of Diesel Engine for Heavy Duty Vehicles

1989-02-01
890128
Noise reduction of diesel engines installed in heavy duty vehicles is one of the highest priorities from the viewpoints of meeting the regulations for urban traffic noise abatement and noise reduction in the cabin for lightening fatigue with comfortable long driving. It is necessary that noise reduction measures then be applied to those causes. Noise reduction measures for the diesel engine can be classified into five categories on the noise radiation block-diagram. These are, reduction of combustion and mechanical forces, deformation and vibration control of cylinder block, vibration control of fastened components, prevention of standing wave and close fitting shields. All noise reduction measures for the diesel engine researched for the purpose of practical use are fully described in this paper.
Technical Paper

Nano Particle Emission Evaluation of State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI) and Fuel Qualities Effects (EtOH, ETBE, FAME, Aromatics and Distillation)

2007-10-29
2007-01-4083
Newly designed laboratory measurement system, which reproduces particle number size distributions of both nuclei and accumulation mode particles in exhaust emissions, was developed. It enables continuous measurement of nano particle emissions in the size range between 5 and 1000 nm. Evaluations of particle number size distributions were conducted for diesel vehicles with a variety of emission aftertreatment devices and for gasoline vehicles with different combustion systems. For diesel vehicles, Diesel Oxidation Catalyst (DOC), urea-Selective Catalytic Reduction (urea-SCR) system and catalyzed Diesel Particulate Filter (DPF) were evaluated. For gasoline vehicles, Lean-burn Direct Injection Spark Ignition (DISI), Stoichiometric DISI and Multi Point Injection (MPI) were evaluated. Japanese latest transient test cycles were used for the evaluation: JE05 mode driving cycle for heavy duty vehicles and JC08 mode driving cycle for light duty vehicles.
Technical Paper

Mechanism of and Fuel Efficiency Improvement by Dimple Texturing on Liner Surface for Reduction of Friction between Piston Rings and Cylinder Bore

2014-04-01
2014-01-1661
Reducing friction between the piston ring and cylinder is an effective way of meeting the demand for lower fuel consumption in vehicle engines. To that effect, the authors have proposed a new and efficient friction reduction treatment for the cylinder. At first glance, this treatment seems similar to typical microtexture treatments, but it is built on a different approach. Through a rig tester, it was confirmed that optimizing the shape of the dimples and the treatment area for the cylinder improves FMEP between the piston ring and the cylinder liner by 17%. This report presents an analysis of the test results to explain the mechanism by which this effect is achieved. Fuel consumption was measured in an actual engine, and a maximum fuel consumption improvement of 3.2% was confirmed after conversion to the Japanese heavy duty vehicle fuel economy standards (Category T2). Lubricating oil consumption, blow-by and durability were also examined.
Technical Paper

MR20DD Motoring Fuel Economy Test for 0W-12 and 0W-8 Low Viscosity Engine Oil

2019-12-19
2019-01-2295
The SAE J300 classification was expanded to 0W-12 and 0W-8 viscosity grades in 2015, and lower viscosity engine oils have been studied in the industry. ILSAC GF-6B that will be introduced in 2020 will specify a 0W-16 requirement, but 0W-12 and 0W-8 grades are not considered. Because engine oil equal to or higher than the 0W-20 grade is recommended for almost all engines globally, suitable engine tests for 0W-12 and 0W-8 do not exist. Therefore, the Japan Automobile Manufacturers Association, Petroleum Association of Japan and Society of Automotive Engineers of Japan decided to establish new 0W-12 and 0W-8 low viscosity engine oil specifications. It is referred to as JASO GLV-1, and together with a new fuel economy engine test procedure, these engine oils for better fuel economy will be put on the Japanese market in 2019. Motoring friction torque tests are widely used to ascertain the friction reduction effect of fuel-economy engine oils.
Technical Paper

Lubricity of Liquefied Gas Assessment of Multi-Pressure/Temperature High-Frequency Reciprocating Rig (MPT-HFRR) -DME Fuel for Diesel

2004-06-08
2004-01-1865
In this study, a MPT-HFRR (Multi-Pressure/Temperature High-Frequency Reciprocating Rig) was manufactured based on a diesel fuel lubricity test apparatus. The MPT-HFRR was designed to be used for conventional test methods as well as for liquefied gas fuel tests. Lubricity tests performed on a calibration standard sample under both atmospheric pressure and high pressure produced essentially constant values, so it was determined that this apparatus could be used for assessing the lubricity of fuel. Using this apparatus, the improvement of lubricity due to the addition of a DME (Dimethyl Ether) fuel additive was investigated. It was found that when 50ppm or more of a fatty acid lubricity improver was added, the wear scar diameter converged to 400μm or less, and a value close to the measured result for Diesel fuel was obtained. The lubricity obtained was considered to be generally satisfactory.
Technical Paper

Lubricity of Liquefied Gas - Assessment of the Various Pressure and Temperature High-Frequency Reciprocating Rig (VPT-HFRR) - LPG Blended Fuel for Diesel Engine

2003-10-27
2003-01-3092
In this research, a test apparatus (VPT-HFRR) for evaluating lubricity was manufactured at an arbitrary pressure according to the lubricity test method (HFRR) for diesel fuel. The lubricity of LPG blended fuel (LBF) for diesel engines was examined using VPT-HFRR., This was a value close to that of diesel fuel, and when a suitable lubricity had been maintained, it was checked. Prototype trucks were manufactured and their durability was examined. After a run of 70,000km or more, no serious trouble had occurred, and when LBF was maintained at a suitable lubricity, it was checked.
Technical Paper

Load and/or Speed Sensing Power Steering for Medium and Heavy Trucks

1985-12-01
852331
It is preferable that power steering permits “static park” and has a good “road Feel” when running. In order to permit “static park”, a large bore actuation cylinder with high flow pump is required. Such a method, however, has two defects, a loss power for driving a large volume pump and a poor “road feel”. Resolving these problems and achieving the above matters. Hino has developed a load sensing power steering system. This system, which employes two actuation cylinders controlled by means of a unique load sensing valve arrangement, is designed to permit use of only one cylinder for highway speeds and both cylinders during a static park maneuver. When the system is combined with the preceding speed sensing power steering, “static park” is further facilitated and a tasty “road feel” is available in accordance with vehicle speed.
X