Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Study of Antiknock Performance Under Various Octane Numbers and Compression Ratios in a DISI Engine

2003-05-19
2003-01-1804
This paper presents a study of antiknock performance under various octane numbers and compression ratios in a direct injection spark ignition (DISI) gasoline engine. The relationship between the octane number and engine performance in the DISI engine-the engine torque and the break specific fuel consumption (BSFC)-was investigated in comparison with a multipoint injection (MPI) engine. Due to the improvement in the charging efficiency and the advance of the ignition timing by cooled aspiration, the engine torque of the DISI engine was improved over that of the MPI engine. It was also found that the octane number requirement (ONR) was reduced. In addition, the possibility of engine performance enhancement at high compression ratios was studied. At high compression ratios, the engine torque is reduced due to the heavy knocking when low octane gasoline is used. However, an improvement in the engine torque has been observed with high octane gasoline.
Technical Paper

Impact Study of High Biodiesel Blends on Exhaust Emissions to Advanced Aftertreatment Systems

2010-04-12
2010-01-1292
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. In the impact on exhaust emissions, the impact of high biodiesel blends into diesel fuel on diesel emissions was evaluated. The wide variety of biodiesel blendstock, which included not only some kinds of fatty acid methyl esters(FAME) but also hydrofined biodiesel(HBD) and Fischer-Tropsch diesel fuel(FTD), were selected to evaluate. The main blend level evaluated was 5, 10 and 20% and the higher blend level over 20% was also evaluated in some tests. The main advanced technologies for exhaust aftertreatment systems were diesel particulate filter(DPF), Urea selective catalytic reduction (Urea-SCR) and the combination of DPF and NOx storage reduction catalyst(NSR).
X