Refine Your Search

Topic

Author

Search Results

Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Temperature Measurements of Combustion Gas in a Spark Ignition Engine By Infrared Monochromatic Pyrometry

1989-11-01
891258
Instantaneous temperature of in-cylinder gas provides a lot of useful and local information for analyzing the combustion process in an internal combustion engine. From the standpoint of applicability to a practical engine, the infrared monochromatic radiation pyrometry required only a single optical window is considered to be more suitable comparing with the conventional infrared absorption-emission pyrometry with two optical windows. Then, the former pyrometer is used to measure the mean gas temperatures averaged on an optical path (or cylinder diameter) of a spark ignition engine connected to a prechamber with a torch nozzle of various area sizes. These measured temperature-crankangle diagrams not only clarify the influences of torch jet flow on the combustion processes, but also correspond well to the heat release rates calculated from the pressure diagrams.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Technical Paper

SOF Component of Lubricant Oil on Diesel PM in a High Boosted and Cooled EGR Engine

2007-04-16
2007-01-0123
The engine in the research is a single cylinder DI diesel using the emission reduction techniques such as high boost, high injection pressure and broad range and high quantity of exhaust gas recirculation (EGR). The study especially focuses on the reduction of particulate matter (PM) under the engine operating conditions. In the experiment the authors measured engine performance, exhaust gases and mass of PM by low sulfur fuel such as 3 ppm and low sulfur lubricant oil such as 0.26%. Then the PM components were divided into soluble organic fraction (SOF) and insoluble organic fraction (ISOF) and they were measured at each engine condition. The mass of SOF was measured from the fuel fraction and lubricant oil fraction by gas chromatography. Also each mass of soot fraction and sulfate fraction was measured as components of ISOF. The experiment was conducted at BMEP = 2.0 MPa as full load condition of the engine and changing EGR rate from 0% to 40 %.
Journal Article

Prediction of Spray Behavior in Injected by Urea SCR Injector and the Reaction Products

2017-10-08
2017-01-2375
In the urea SCR system, urea solution is injected by injector installed in the front stage of the SCR catalyst, and NOx can be purified on the SCR catalyst by using NH3 generated by the chemical reaction of urea. NH3 is produced by thermolysis of urea and hydrolysis of isocyanic acid after evaporation of water in the urea solution. But, biuret and cyanuric acid which may cause deposit are sometimes generated by the chemical reactions without generating NH3. Spray behavior and chemical reaction of urea solution injected into the tail-pipe are complicated. The purpose of this study is to reveal the spray behavior and NH3 generation process in the tail-pipe, and to construct the model capable of predicting those accurately. In this report, the impingement spray behavior is clarified by scattered light method in high temperature flow field. Liquid film adhering to the wall and deposit generated after evaporation of water from the liquid film are photographed by the digital camera.
Technical Paper

Prediction of Oil Dilution by Post-injection in DPF Regeneration Mode

2019-12-19
2019-01-2354
This work investigated the mechanism of oil dilution by post injection to remove accumulated particulate matter on the diesel particulate filter of diesel engines. We developed a model to simulate post injection spray under low ambient gas pressure conditions. The model can predict the quantity of fuel mass adhered on the cylinder wall. The adhered fuel enters oil sump through the piston ring and cause oil dilution. The fuel in diluted oil evaporates during normal engine operations. We focus on the mechanism of fuel evaporation from diluted oil. The effects of engine speed and oil temperature on the evaporation were investigated. The results showed that the fuel evaporation rate increases with increasing engine speed and oil temperature. Furthermore, we developed an empirical model to predict the fuel evaporation rate of diluted oil through regression analysis with measured data.
Technical Paper

Potential of Nanoparticle Formation by Vehicles

2006-04-03
2006-01-0622
For the better understanding of nanoparticles observed on the rode side, adding to the emission test on the chassis dynamometer and engine dynamometer test, possible factors for formation of nanoparticles are investigated. As other possible factors, cold starting of transient test cycle, blow-by gas from heavy duty diesel engine without a positive crankcase ventilation, exhaust braking, and plume mixing of vehicle exhausts were investigated. Nuclei mode particles under the transient test cycles formed during fuel cut period, fuel enrichment period and idling period. Concentration of nuclei mode particles during the idling period are depends on exhaust temperature. The higher exhaust temperature courses the lower number concentration but variation range is within twice. Emission rate of nanoparticles from blow-by gas is one thousandth of tail pipe emissions rate and was found to be negligible.
Technical Paper

Outline of the Advanced Clean Energy Vehicle Project

1999-08-17
1999-01-2943
The Advanced Clean Energy Vehicle Project (ACE Project) has been initiated to develop the vehicles which can utilize oil-alternative and clean fuels and achieve twice the energy efficiency of conventional vehicles. To achieve the project objectives, Japanese automobile manufactures are developing six types of hybrid vehicles. Technologies of the developing vehicles include many kinds of hybrid elements, such as series and series/parallel types, alternative fuels (natural gas, DME, methanol) internal combustion engines and a fuel cell, as well as flywheels, ultra-capacitors and Li-ion batteries. This paper introduces the outline of ACE project.
Technical Paper

Nano Particle Emission Evaluation of State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI) and Fuel Qualities Effects (EtOH, ETBE, FAME, Aromatics and Distillation)

2007-10-29
2007-01-4083
Newly designed laboratory measurement system, which reproduces particle number size distributions of both nuclei and accumulation mode particles in exhaust emissions, was developed. It enables continuous measurement of nano particle emissions in the size range between 5 and 1000 nm. Evaluations of particle number size distributions were conducted for diesel vehicles with a variety of emission aftertreatment devices and for gasoline vehicles with different combustion systems. For diesel vehicles, Diesel Oxidation Catalyst (DOC), urea-Selective Catalytic Reduction (urea-SCR) system and catalyzed Diesel Particulate Filter (DPF) were evaluated. For gasoline vehicles, Lean-burn Direct Injection Spark Ignition (DISI), Stoichiometric DISI and Multi Point Injection (MPI) were evaluated. Japanese latest transient test cycles were used for the evaluation: JE05 mode driving cycle for heavy duty vehicles and JC08 mode driving cycle for light duty vehicles.
Technical Paper

Kinetic Measurements of HNCO Hydrolysis over SCR Catalyst

2018-09-10
2018-01-1764
To meet the strict emission regulations for diesel engines, an advanced processing device such as a Urea-SCR (selective catalytic reduction) system is used to reduce NOx emissions. The Real Driving Emissions (RDE) test, which is implemented in the European Union, will expand the range of conditions under which the engine has to operate [1], which will lead to the construction of a Urea-SCR system capable of reducing NOx emissions at lower and higher temperature conditions, and at higher space velocity conditions than existing systems. Simulations are useful in improving the performance of the urea-SCR system. However, it is necessary to construct a reliable NOx reduction model to use for system design, which covers the expanded engine operation conditions. In the urea-SCR system, the mechanism of ammonia (NH3) formation from injected aqueous urea solution is not clear. Thus, it is important to clarify this mechanism to improve the NOx reduction model.
Technical Paper

Investigations of Compatibility of ETBE Gasoline with Current Gasoline Vehicles

2006-10-16
2006-01-3381
Clarifying the impact of ETBE 8% blended fuel on current Japanese gasoline vehicles, under the Japan Clean Air Program II (JCAPII) we conducted exhaust emission tests, evaporative emission tests, durability tests on the exhaust after-treatment system, cold starting tests, and material immersion tests. ETBE 17% blended fuel was also investigated as a reference. The regulated exhaust emissions (CO, HC, and NOx) didn't increase with any increase of ETBE content in the fuel. In durability tests, no noticeable increase of exhaust emission after 40,000km was observed. In evaporative emissions tests, HSL (Hot Soak Loss) and DBL (Diurnal Breathing Loss) didn't increase. In cold starting tests, duration of cranking using ETBE 8% fuel was similar to that of ETBE 0%. In the material immersion tests, no influence of ETBE on these material properties was observed.
Technical Paper

Influence of Ferrocene on Engine and Vehicle Performance

2006-10-16
2006-01-3448
Ferrocene is used as an antiknock additive to replace lead alkyls. To clarify the influence of one metal additive, ferrocene, on engine, following experiments were carried out. The insulation resistance of spark plugs was measured, deposits in the engine were analyzed, and an exhaust emission and fuel economy tests were conducted using gasoline containing ferrocene. The deposit, which contained iron oxides, adhered to the combustion chamber, spark plugs, and exhaust pipe when the engine operated with gasoline containing ferrocene. When vehicles operated with gasoline containing ferrocene, fuel consumption increased and the exhaust temperature rose. In addition, an abnormal electrical discharge pattern was observed in spark plugs operating at high temperatures. Iron-oxide of Fe3O4 is changed into Fe2O3 under high temperatures. Discharge current flows in iron oxides including Fe2O3 because the conductivity of Fe2O3 increases at high temperatures.
Technical Paper

Improvement of Flame Exposure Test for High Pressure Hydrogen Cylinders to Achieve High Reliability and Accuracy

2006-04-03
2006-01-0128
To achieve a method for flame exposure testing of high-pressure cylinders in automobiles that allows fair evaluations to be made at each testing institute and also provides high testing accuracy, we investigated the effects of the flame scale of the fire source, the fuel type, the shape of the pressure relief device shield, and the ambient temperature through experiments and numerical simulation. We found that, while all of these are factors that influence evaluation results, the effects of some factors can be reduced by increasing the flame size. Therefore, a measurement technique to quantitatively determine the flame size during the test is required. Measuring temperatures at the top of each cylinder is a candidate technique. Furthermore, flame exposure tests to be conducted on cylinders as single units must ensure safety during a vehicle fire.
Technical Paper

Impact of Oil-derived Sulfur and Phosphorus on Diesel NOx Storage Reduction Catalyst - JCAP II Oil WG Report

2006-10-16
2006-01-3312
Emission regulations for diesel-powered vehicles have been gradually tightening. Installation of after-treatment devices such as diesel particulate filters (DPF), NOx storage reduction (NSR) catalysts, and so on is indispensable to satisfy rigorous limits of particulate matter (PM) and nitrogen oxides (NOx). Japan Clean Air Program II Oil Working Group (JCAPII Oil WG) has been investigating the effect of engine oil on advanced diesel after-treatment devices. First of all, we researched the impact of oil-derived ash on continuous regeneration-type diesel particulate filter (CR-DPF), and already reported that the less sulfated ash in oil gave rise to lower pressure drop across CR-DPF [1]. In this paper, impact of oil-derived sulfur and phosphorus on NSR catalyst was investigated using a 4L direct injection common-rail diesel engine with turbo-intercooler. This engine equipped with NSR catalyst meets the Japanese new short-term emission regulations.
Technical Paper

Impact of Oil-derived Ash on Continuous Regeneration-type Diesel Particulate Filter - JCAPII Oil WG Report

2004-06-08
2004-01-1887
Impact of oil-derived ash on the pressure drop of continuous regeneration-type diesel particulate filter (CR-DPF) was investigated through 600hrs running test at maximum power point on a 6.9L diesel engine, which meets the Japanese long-term emission regulations enacted in 1998, using approximately 50ppm sulfur content fuel. Sulfated ash content of test oils were varied as 0.96, 1.31, and 1.70 mass%, respectively. During the running test, the exhaust pressure drop through CR-DPF was measured. And after the test, the ventilation resistance through CR-DPF was also evaluated before and after the baking process, which was applied to eliminate the effect of soot accumulated in CR-DPF. The results revealed that the less sulfated ash in oil gave rise to lower pressure drop across CR-DPF. According to microscope examination of the baked DPF, ash was mainly accumulated on the wall surface of CR-DPF, and that seemed to be related to the magnitude of pressure drop caused by ash.
Technical Paper

Impact Study of High Biodiesel Blends on Performance of Exhaust Aftertreatment Systems

2008-10-06
2008-01-2494
Biodiesel Fuel (BDF) Research Work Group works on identifying technological issues on the use of high biodiesel blends (over 5 mass%) in conventional diesel vehicles under the Japan Auto-Oil Program started in 2007. The Work Group conducts an analytical study on the issues to develop measures to be taken by fuel products and vehicle manufacturers, and to produce new technological findings that could contribute to the study of its introduction in Japan, including establishment of a national fuel quality standard covering high biodiesel blends. For evaluation of the impacts of high biodiesel blends on performance of diesel particulate filter system, a wide variety of biodiesel blendstocks were prepared, ranging from some kinds of fatty acid methyl esters (FAME) to another type of BDF such as hydrotreated biodiesel (HBD). Evaluation was mainly conducted on blend levels of 20% and 50%, but also conducted on 10% blends and neat FAME in some tests.
Technical Paper

Impact Study of High Biodiesel Blends on Exhaust Emissions to Advanced Aftertreatment Systems

2010-04-12
2010-01-1292
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. In the impact on exhaust emissions, the impact of high biodiesel blends into diesel fuel on diesel emissions was evaluated. The wide variety of biodiesel blendstock, which included not only some kinds of fatty acid methyl esters(FAME) but also hydrofined biodiesel(HBD) and Fischer-Tropsch diesel fuel(FTD), were selected to evaluate. The main blend level evaluated was 5, 10 and 20% and the higher blend level over 20% was also evaluated in some tests. The main advanced technologies for exhaust aftertreatment systems were diesel particulate filter(DPF), Urea selective catalytic reduction (Urea-SCR) and the combination of DPF and NOx storage reduction catalyst(NSR).
Technical Paper

Fire Safety Evaluation of a Vehicle Equipped with Hydrogen Fuel Cylinders: Comparison with Gasoline and CNG Vehicles

2006-04-03
2006-01-0129
In this study, we evaluated the fire safety of vehicles that use compressed hydrogen as fuel. We conducted fire tests on vehicles that used compressed hydrogen and on vehicles that used compressed natural gas and gasoline and compared temperatures around the vehicle and cylinder, internal pressure of the cylinder, irradiant heat around the vehicle, sound pressure levels when the pressure relief device (PRD) was activated, and damage to the vehicle and surrounding flammable objects. The results revealed that vehicles equipped with compressed hydrogen gas cylinders are not more dangerous than CNC or gasoline vehicles, even in the event of a vehicle fire.
Technical Paper

Feasibility Study of Urea SCR Systems on Heavy Duty Commercial Vehicles

2004-06-08
2004-01-1944
Four urea SCR systems were developed and evaluated on a C/D and on the road to investigate their potential for Japanese emission regulations in 2005 and beyond. Test results showed that NOx conversion ratios were 50 to 70% during the Japanese D13 mode cycle, and the ratios under the transient driving cycle were lower than those tested during a steady state. Unregulated emissions, such as benzene, aldehyde and benzo[a]pyrene, existed either at a trace level using the oxidation catalyst, or lower than a base diesel engine, when no oxidation catalyst was used. The health effects of particulate matter emitted from the SCR system were almost the same as those from conventional diesel engines, as evaluated by the Ames test and in vitro micronucleus test. Thermal degradation products, such as cyanuric acid and melamine, were two to four figures lower compared with the toxicological information of Safety Information Resources Inc. (SIRI).
Technical Paper

Direct Visualization of Soot and Ash Transport in Diesel Particulate Filters during Active Regeneration Process

2019-12-19
2019-01-2287
This study employed a diesel particulate generator (DPG), with an installed engine oil injector for soot and ash accumulation in a diesel particulate filter (DPF). Ash was generated by engine oil injection into the diesel burner flame. The amount of soot accumulation per loading varied from 0.5 g/L to 8 g/L while ash accumulation amount per loading was maintained at 0.5 g/L. Initially, ash accumulation distribution in the DPF was visualized using X-ray computed tomography (CT). It was revealed that the form of ash accumulation changed depending on the amount of soot accumulation before active regeneration, i.e., a large amount of soot accumulation resulted in plug ash, whereas a small amount of soot accumulation resulted in wall ash. To clarify ash accumulation mechanisms, soot and ash transport behavior in DPF during active regeneration process was directly observed using a high-speed camera through an optically accessible D-shaped cut DPF covered with a quartz glass plate.
X