Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Numerical Approach to Analyze the Power Transmitting Mechanisms of a Metal Pushing V-Belt Type CVT

1996-02-01
960720
Some theories on the behaviour of CVT using metal pushing V-belts have been recently drawn. However, our previous experiments did not well prove their prediction. A numerical model which can calculate all block motions of the belt was developed in this paper. Using this model, some steady states of power transmitting of CVT were calculated and compared with the previous experimental results. Satisfactory agreements were obtained between two results in all ratio. This model is effective to estimate the CVT response at steady states.
Journal Article

A Semi-Detailed Chemical Kinetic Mechanism of Acetone-Butanol-Ethanol (ABE) and Diesel Blends for Combustion Simulations

2016-04-05
2016-01-0583
With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. To seek for an optimized volumetric ratio for ABE-diesel blends, the previous work in our team has experimentally investigated and analyzed the combustion features of ABE-diesel blends with different volumetric ratio (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %) in a constant volume chamber. It was found that an increased amount of acetone would lead to a significant advancement of combustion phasing whereas butanol would compensate the advancing effect. Both spray dynamic and chemistry reaction dynamic are of great importance in explaining the unique combustion characteristic of ABE-diesel blend. In this study, a semi-detailed chemical mechanism is constructed and used to model ABE-diesel spray combustion in a constant volume chamber.
Technical Paper

A Study of a Metal Pushing V-Belt Type CVT-Part 1: Relation Between Transmitted Torque and Pulley Thrust

1993-03-01
930666
Transmitted torque, thrusts of driving and driven pulleys, and axial force between two pulleys were measured on a metal pushing V-belt type CVT. Thrust ratios between driving and driven pulleys at several different speed ratios were plotted with respect to torque ratio and compared with each other. It was found that the relation between thrust ratio and speed ratio was almost independent of rotational speed of the pulley and the maximum transmittable torque at a constant torque ratio. The thrust ratio is primarily a function of speed ratio. It also depends on torque ratio and coefficient of friction between blocks and a pulley. An empirical equation for pulley thrust balance was derived. The equation is expressed in an explicit form. It is so simple that it can be applicable for electronic control of CVT.
Technical Paper

A Study of a Metal Pushing V-Belt Type CVT-Part 2: Compression Force Between Metal Blocks and Ring Tension

1993-03-01
930667
In this study, distributions of block compression force on the driving and driven pulleys were measured using a tiny load-cell inserted between two blocks and a telemeter system, under several constant speed ratios. Ring tension distributions were also measured using a specially devised block. From the experimental results, the following conclusions were drawn: (1) Block compression force distribution on the driving pulley is significantly different from that on the driven pulley. (2) Ring tension takes different value at each side of strings. It is considered that this phenomenon is caused by difference of saddle surface speed between two pulleys.
Technical Paper

A Study on a Metal Pushing V-Belt Type CVT (Part 3: What Forces Act on Metal Blocks?)

1994-03-01
940735
Block compression force and ring tension of a metal pushing V-belt type CVT have been experimentally measured at steady states. The peculiar transmitting mechanisms for this type of belts has also been outlined based on the experimental results in the previous works. In this paper, other forces simultaneously acting on a block at steady states were measured using newly developed devised blocks. These forces are frictional force between blocks and rings, normal force between blocks and pulleys, frictional forces between blocks and pulleys in radial and tangential directions. The transmitting mechanisms for the metal pushing V-belt type CVT were drawn in detail based on new experimental data. The following conclusions are emphasized in the present work. (1) A cohesive point where the block coheres with the ring exists in the pulley having a larger pitch radius at all conditions. This is not dependent on speed ratio and transmitting torque.
Technical Paper

A Study on a Metal Pushing V-Belt Type CVT (Part 4: Forces Act on Metal Blocks when the Speed Ratio is Changing)

1995-02-01
950671
Six forces act on the block of a metal pushing V-belt. Previously, we successfully measured these forces at steady states using devised blocks and a telemeter system. In this paper, six forces are measured using the same testing and measuring systems at transitional states where a speed ratio varies from low to high, or vice versa. The experimental results reveal that distributions of four forces at transitional states except normal and frictional forces between rings and blocks are different in shape from those at steady states.
Technical Paper

A Test Bench for the Turbocharger Fatigue Life Based on the Self-Circulation

2015-04-14
2015-01-0429
The low cycle fatigue experiment is extensively used to test the reliability and durability of turbocharger. Low cycle fatigue test is mainly the switching between high and low speed. As the result of the experiment, the fatigue life is shorter as the difference between high and low speed becomes greater. In the traditional low cycle fatigue test, a large air compressor is needed to drive the turbocharger under different operating conditions, which consume large amounts of electric power. This paper presents a new experiment device which has double chambers and double turbochargers. This device can be self-circulating, without the large air compressor, to realize high and low speed switching on the premise of not exceeding the limitation of turbine entry temperature. First, a detailed model is established in GT-Power and self-circulation test data has been used to validate the model.
Technical Paper

A new legform impactor for evaluation of car aggressiveness in car-pedestrian accidents

2001-06-04
2001-06-0174
The goal of the present study was to develop a new legform impactor that accurately represents both the impact force (i.e., force between the leg and impacting mass)and leg kinematics in lateral impacts simulating car-pedestrian accidents. In its development we utilized the knee joint of the pedestrian dummy called Polar-2 (HONDA R&D) in which the cruciate and collateral ligaments are represented by means of springs and cables, the geometry of the femoral condyles is simplified using ellipsoidal surfaces, and the tibial meniscus is represented by an elastomeric pad. The impactor was evaluated by comparing its responses with published experimental results obtained using postmortem human subjects (PMHS). The evaluation was done under two conditions: 1)impact point near the ankle area (bending tests),and 2)impact point 84 mm below the knee joint center (shearing tests). Two impact speeds were used: 5.56 m/s and 11.11 m/s.
Technical Paper

ACOUSTOMIZE™ A Method to Evaluate Cavity Fillers NVH & Sealing Performance

2011-05-17
2011-01-1672
ACOUSTOMIZE™ is a new method of acoustic evaluation used for the purpose of understanding and optimizing NVH performance of vehicles. The following paper documents a case study of the ACOUSTOMIZE™ test methodology on a passenger car BIW. This study includes an analysis of noise flow through BIW locations, a comparison of noise sound levels through BIW cavities with and without a sound treatment package and a comparison of the original cavity sealing design package consisting of baffles, tapes and baggies to low density polyurethane NVH Foam. The results of the study show detection of complex BIW pass throughs that the body leakage test (BLT) was not able to find. In addition, the data shows improved noise reduction with the low density polyurethane foam versus the original cavity sealing design package.
Technical Paper

An Electrohydraulic Gas Sampling Valve with Application to Hydrocarbon Emissions Studies

1980-02-01
800045
Design and development of an electrohydraulically actuated gas sampling valve is presented for use in auto engine combustion studies. The valve was developed with particular emphasis on sampling within the vicinity of the wall quench layer, requiring minimum leakage rates to avoid sample contamination and flush seating of the valve-stem to valve-seat to avoid perturbations of the wall layer. Response in the range of 0.4 to 1.0 milliseconds is attainable for variable valve lifts measured between 0.01 to 0.30 mm while using a net sealing force of approximately 750N. Gas leakage rates ranged from 0.05% to 1% of the sample mass flow rate when sampling from estimated distances from the wall of 0.3 mm to 0.03 mm, respectively, at a cylinder pressure of 10 bar. The gas sampling valve is presently coupled to a gas chromatograph to measure concentrations of major species components.
Technical Paper

Analysis of Low Concentration Aldehyde and Ketone Compounds in Automotive Exhaust Gas by New Collection Reagent.

2005-05-11
2005-01-2152
Acidified 2,4-dinitrophenylhydrazine (DNPH) solution, or DNPH-impregnated cartridges are commonly used for the collection of automotive exhaust carbonyl compounds. There are some DNPH-carbonyl compounds in not in use DNPH cartridges and DNPH solution. Furthermore, concentrations of automotive exhaust carbonyl compounds are decreasing according to improvement of the purification technology for automotive exhaust. Automotive exhaust carbonyl compounds become to be difficult to be analyzed with DNPH collection method, because of these two reasons. It is thought that reliable analysis of acrolein in automotive exhaust is very difficult because concentration of DNPH-acrolein in extracted solution is not stable. Furthermore, it is found out that DNPH-acrolein in DNPH-cartridge is disappeared for short time storage in this research.
Technical Paper

Analysis of Spray Feature Injected by Tailpipe Injector for Aftertreatment of Diesel Engine Emissions

2017-10-08
2017-01-2373
Diesel Particulate Filter (DPF) is a very effective aftertreatment device to limit particulate emissions from diesel engines. As the amount of soot collected in the DPF increases, the pressure loss increases. Therefore, DPF regeneration needs to be performed. Injected fuel into the exhaust line upstream of the Diesel Oxidation Catalyst (DOC), hydrocarbons are oxidized on the DOC, which increases the exhaust gas temperature at the DPF inlet. It is also necessary that the injected fuel is completely vaporized before entering the DOC, and uniformly mixed with the exhaust gases in order to make the DOC work efficiency. However, ensuring complete evaporation and an optimum mixture distribution in the exhaust line are challenging. Therefore, it is important that the fuel spray feature is grasped to perform DPF regeneration effectively. The purpose of this study is the constructing a simulation model.
Technical Paper

Application of Fatigue Life Prediction Methods for GMAW Joints in Vehicle Structures and Frames

2011-04-12
2011-01-0192
In the North American automotive industry, various advanced high strength steels (AHSS) are used to lighten vehicle structures, improve safety performance and fuel economy, and reduce harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using Gas Metal Arc Welding (GMAW) in the current generation body-in-white structures. Additionally, fatigue failures are most likely to occur at joints subjected to a variety of different loadings. It is therefore critical that automotive engineers need to understand the fatigue characteristics of welded joints. The Sheet Steel Fatigue Committee of the Auto/Steel Partnership (A/S-P) completed a comprehensive fatigue study on GMAW joints of both AHSS and conventional sheet steels including: DP590 GA, SAE 1008, HSLA HR 420, DP 600 HR, Boron, DQSK, TRIP 780 GI, and DP780 GI steels.
Technical Paper

Calculating Fractal Dimension of Worn Bearing's Vibration Signals in Automotive Transmission

2003-05-05
2003-01-1487
This paper first discusses the principles of how to identify whether a time series has chaotic characteristics, and explores a method of finding out the embedding dimension of a time series. Then Grassberger-Procaccia (G-P) algorithm is adopted to calculate correlative dimension. After the validity of G-P algorithm is confirmed using several traditional strange attractors, it is applied to calculate the fractal dimension of some vibration signals of an automotive transmission. This article presents how to apply chaos and fractal theories to diagnose the wearing of ball bearings in automotive transmissions based on the analysis of the transmission acceleration vibration signals. The results show that the vibration signals of automotive transmissions have fractal nature. There are certain correlations between a bearing's condition and the fractal dimension of its vibration signal.
Technical Paper

Calculation of Hydrogen Consumption for Fuel Cell Vehicles by Exhaust Gas Formulation

2008-04-14
2008-01-0465
The hydrogen consumption of fuel cell vehicles (FCV) can be measured by the gravimetric, pressure and flow methods within a ±1% error. These are the methods acknowledged by ISO and SAE [1, 2], but require the test vehicles to be modified in order to supply hydrogen from an external, rather than the onboard tank. Consequently, technical assistance of the vehicle manufacturer is necessary for this modification, while various components in the test vehicle must be readjusted. For these reasons, a measurement method free of vehicle modification is in great demand. The present study therefore developed an “oxygen balance method” which determines the amount of hydrogen that has reacted with oxygen in the fuel cell stack by measuring the oxygen concentration in exhaust gas.
Technical Paper

Calculations and Test Measurements of In-Cylinder Combustion Velocity of Hydrogen - Air Mixtures Considering the Effect of Flame Instability

2017-03-28
2017-01-0780
The combustion characteristics of hydrogen-air mixtures have significance significant impact on the performance and control of hydrogen-fueled internal combustion engines and the combustion velocity is an important parameter in characterizing the combustion characteristics of the mixture. A four-cylinder hydrogen internal combustion engine was used to study hydrogen combustion; the combustion characteristics of a hydrogen mixture were experimentally studied in a constant-volume incendiary bomb, and the turbulent premixed combustion characteristics of hydrogen were calculated and analyzed. Turbulent hydrogen combustion comes under the folded laminar flame model. The turbulent combustion velocity in lean hydrogen combustion is related not only to the turbulent velocity and the laminar burning velocity, but also to the additional turbulence term caused by the instability of the flame.
Technical Paper

Chemical Kinetics Study on Ignition Characteristics of Biodiesel Surrogates

2011-08-30
2011-01-1926
Methyl butanoate (MB) and methyl decanoate (MD) are surrogates for biodiesel fuels. According to computational results with their detailed reaction mechanisms, MB and MD indicate shorter ignition delays than long alkanes such as n-heptane and n-dodecane do at an initial temperature over 1000 K. The high ignitability of these methyl esters was computationally analyzed by means of contribution matrices proposed by some of the authors. Due to the high acidity of an α-H atom in a carbonyl compound, hydroperoxy radicals are generated out of the equilibrium between forward and backward reactions of O₂ addition to methyl ester radicals by the internal transfer of an α-H atom in the initial stage of an ignition process. Some of the hydroperoxy methyl ester radicals can generate OH to activate initial reactions. MB has an efficient CH₃O formation path via CH₃ generated by the β-scission of an MB radical which has a radical site on the α-C atom to the carbonyl group.
Technical Paper

Comparison of Computed and Measured High-Pressure Conical Diesel Sprays

2000-03-06
2000-01-0951
To model sprays from pintle type nozzles with large hollow cone angle and high injection pressure, the correct flow field in the near region must be predicted. A new model was implemented in KIVA-3V code, which adopts the theory of steady gas jet to correct the relative velocities between the drop and gas phases, based on the existence of quasi-steady part of the conical spray and an assumption of equivalent gas jet. Accordingly, the structure of the sprays is defined into three parts: 1. initial part that the gas phase velocity is set to the assumed gas injection velocity; 2. quasi-steady part where the component of velocity in the symmetric line direction of the spray is corrected; 3. stagnation part which is left unchanged. This new model is referred to as the Relative Velocity Correction (RVC) model, and is a set of empirical equations that calculate the sectional distribution of the gas-phase velocity along the symmetric line of the sprays.
Journal Article

Comparison of Fires in Lithium-Ion Battery Vehicles and Gasoline Vehicles

2014-04-01
2014-01-0428
Electric vehicles have become more popular and may be involved in fires due to accidents. However, characteristics of fires in electric vehicles are not yet fully understood. The electrolytic solution of lithium-battery vehicles is inflammable, so combustion characteristics and gases generated may differ from those of gasoline cars. Therefore, we conducted fire tests on lithium-ion battery vehicles and gasoline vehicles and investigated the differences in combustion characteristics and gases generated. The fire tests revealed some differences in combustion characteristics. For example, in lithium-ion battery vehicles, the battery temperature remained high after combustion of the body. However, there was almost no difference in the maximum CO concentration measured 0.5 to 1 m above the roof and 1 m from the side of the body. Furthermore, HF was not detected in either type of vehicle when measured at the same positions as for CO.
Technical Paper

Computer-Aided Engineering Modeling and Automation on High-Performance Computing

2022-06-27
2022-01-5051
The computer-aided engineering (CAE) automation study requires a large disk space and a premium processor. If all finite element (FE) models run locally, it may crash the local machine, and if the FE model runs on high-performance computing (HPC), transferring data from the server to the local machine to do the optimization may cause latency issues. This automation study provides a unique road map to optimize the design by working efficiently using the initial setup on the local machine, running an analysis of a large number of FE models on HPC, and performing optimization on the server. CAE Automation process has been demonstrated using a case study on a driveline component, crush spacer. Crush spacer is a very critical engineering design because, first, it provides the minimum required preload to the bearing inner races to keep them in position and, second, it endures a number of duty cycles.
X