Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Visualization and Heat Release Analysis of Premixed Diesel Combustion with Various Fuel Ignitabilities and Oxygen Concentrations in a Constant Volume Combustion Vessel

2013-04-08
2013-01-0899
Low NOx and soot free premixed diesel combustion can be realized by increasing ignition delays in low oxygen atmospheres, as well as the combustion here also depends on fuel ignitability. In this report single intermittent spray combustion with primary reference fuels and a normal heptane-toluene blend fuel under several oxygen concentrations in a constant volume combustion vessel was analyzed with high-speed color video and pressure data. Temperature and KL factor distributions are displayed with a 2-D two-color method. The results show that premixing is promoted with a decrease in oxygen concentration, and the local high temperature regions, above 2200 K, as well as the duration of their appearance decreases with the oxygen concentration. With normal heptane, mild premixed diesel combustion can be realized at 15 vol% oxygen and there is little luminous flame.
Technical Paper

HCCI Fuels Evaluations-Gasoline Boiling Range Fuels

2005-10-24
2005-01-3727
Four fuels in the gasoline boiling range where tested in a constant volume combustion bomb and a variable compression ratio HCCI engine. The fuels were tested using a port fuel injection system. The results of the experiments defined the range of HCCI operation in terms of the Coefficient of Variation (COV) of IMEP and the maximum rate of pressure rise. The results for the test fuels are compared to each other and to a baseline gasoline. The results are discussed in terms of the effects of the fuel properties (basically, various measure of ignition quality) on the engine heat release rates and efficiencies.
Technical Paper

Evaluation of HCCI Engine Potentials in Comparison to Advanced Gasoline and Diesel Engines

2006-10-16
2006-01-3249
The objective of this program was to improve the HCCI combustion process on a single-cylinder VCR engine by calibrating engine and HCCI operation specific factors such as EGR flow rates, intake air pressure, intake air temperature, compression ratio, etc. Due to the large number of factors to be investigated, a statistical design of experiments method (DoE) was utilized in order to reduce the number of test combinations in the calibration test matrix and, thus, the duration of the engine calibration task. Upon completion of the HCCI engine calibration, the engine was operated through a steady-state test matrix representing vehicle certification test cycles. Weighting factors for each of the test points were applied to estimate the engine performance and emissions in respect to certification requirements.
Technical Paper

A Quantitative Study of Fuel Efficiency of Diesel Vehicles with Diesel Particulate Filter in Repeated Test Cycles

2012-09-10
2012-01-1704
Diesel Particulate Filter (DPF) has become a key technology in modern diesel vehicles to achieve low emissions, and the performance of DPFs has been improved through considerable efforts by manufacturers. While DPF is essential to meeting the stringent regulations for particulate matter (PM), it has a negative impact on fuel efficiency (FE) due to its periodical regeneration for burning off the accumulated PM in DPF. Hence, detailed assessments on the FE impact of DPF regeneration technologies are necessary to better understand the FE potential of diesel vehicles. However, few quantitative FE studies have been reported regarding the DPF regeneration technologies applied to vehicles introduced into the market. We investigated the influence of the DPF regeneration on FE performance using three new diesel vehicles with different DPF regeneration technologies.
X