Refine Your Search

Topic

Search Results

Technical Paper

Virtual Simulation Research on Vehicle Ride Comfort

2006-10-31
2006-01-3499
In this paper, a computer model of a multi-purpose vehicle (MPV) is built to study vehicle ride comfort by multi-body system dynamic theory. Virtual test rigs are developed to perform natural body frequency tests and random road input tests on the complete vehicle multi-body dynamic model. By comparing simulation results with field test results, the accuracy of the model is validated and the feasibility of virtual test rigs is established.
Technical Paper

Unstructured Road Region Detection and Road Classification Algorithm Based on Machine Vision

2023-04-11
2023-01-0061
Accurate sensing of road conditions is one of the necessary technologies for safe driving of intelligent vehicles. Compared with the structured road, the unstructured road has complex road conditions, and the response characteristics of vehicles under different road conditions are also different. Therefore, accurately identifying the road categories in front of the vehicle in advance can effectively help the intelligent vehicle timely adjust relevant control strategies for different road conditions and improve the driving comfort and safety of the vehicle. However, traditional road identification methods based on vehicle kinematics or dynamics are difficult to accurately identify the road conditions ahead of the vehicle in advance. Therefore, this paper proposes an unstructured road region detection and road classification algorithm based on machine vision to obtain the road conditions ahead.
Technical Paper

Unsteady Flow Control and Wind Noise Reduction of Side-View Mirror

2018-04-03
2018-01-0744
It aims to study the unsteady flow characteristic of the side-view mirror wake field, and reduce the wind noise by means of unsteady flow control. In this paper, the PIV test in a wind tunnel is used to capture the unsteady flow in the wake field of the side-view mirror, which is used to verify the accuracy of the steady simulation method with RANS after being averaged. Then LES turbulence model is used to obtain the wind noise, and the unsteady flow characteristic like vortex shedding of the side-view mirror is studied. The results show that, in the wake of the side-view mirror, there is a vortex pair similar to Karman Vortex Street. In both horizontal and vertical sections, these two vortexes are respectively separated from the upper and lower edges of the side-view mirror. Accompanied by a significantly uncertain periodic shedding, they continue to extend back until dissipating.
Technical Paper

Support Vector Machine Theory Based Shift Quality Assessment for Automated Mechanical Transmission (AMT)

2007-04-16
2007-01-1588
In China there is a strong trend in the application of vehicles equipped with automatic transmissions in considering the complexity of traffic and the convenience of automatic transmissions. As a type of automatic transmission, automated mechanical transmission (AMT) shows great potential to be developed as a main transmission because of its simple structures, easy upgrade from manual transmission (MT) and low price. Support Vector Machine (SVM) is a new statistic method which could make a good prediction with limited training instances. Compared with Artificial Neutral Network (ANN), SVM can provide better genetic ability. In order to verify the ability of the new method, the model trained by one set of AMT car data was applied on some other AMT vehicles, and the predicted results were compared with subjective rating results by expert drivers and analyzed to identify the potential of this new assessment system.
Technical Paper

Slope Starting Control of Off-Road Vehicle with 32-Speed Binary Logic Automatic Transmission

2022-01-03
2022-01-5001
Taking an off-road vehicle equipped with 32-speed binary logic automatic transmission (AT) as the research object, the slope starting control research is carried out. The slope starting process is divided into the overcoming resistance stage, the sliding friction stage, and the synchronization stage. The control strategies for each stage are designed respectively. Focusing on the control of the sliding friction stage, the equivalent two-speed model of the starting clutch is established, which realizes the calculation of the speed difference and the slip rate between the driving and driven ends of the starting clutch. Furthermore, the slope starting control strategy based on the proportional-integral-derivative (PID) control of the clutch slip rate is designed. Through the simulation tests of the vehicle starting at different slopes, the correctness of the slope starting control strategy has been verified by MATLAB/Simulink.
Technical Paper

Simulation of Straight-Line Type Assist Characteristic of Electric Power-Assisted Steering

2004-03-08
2004-01-1107
Electric Power-Assisted Steering (EPAS) is a new power steering technology that will define the future of vehicle steering. The assist of EPAS is the function of the steering wheel torque and vehicle velocity. The assist characteristic of EPAS is set by control software, which is one of the key issues of EPAS. The straight-line type assist characteristic has been used in some current EPAS products, but its influence on the steering maneuverability and road feel hasn't been explicitly studied in theory. In this paper, the straight-line type assist characteristic is analyzed theoretically. Then a whole vehicle dynamic model used to study the straight-line type assist characteristic is built with ADAMS/Car and validated with DCF (Driver Control Files) mode of ADAMS/Car. Based on the whole vehicle dynamic model, the straight-line type assist characteristic's influence on the steering maneuverability and road feel is investigated.
Technical Paper

Scheme and Structure Design of Binary Double Internal Meshing Planetary Gear Transmission

2021-04-14
2020-01-5227
Aiming at the low transmission efficiency and power density of the hydraulic automatic transmission (AT), and the increasingly complex structure of its planetary gear with the increase of transmission gears, this paper proposes a new type of binary logic transmission (BLT), which adopts the double internal meshing planetary row (DIMPR), based on a heavy-duty commercial vehicle. By introducing the concept of BLT and analyzing the transmission performance of the DIMPR, the process of scheme design of binary double internal meshing planetary gear transmission (BDIMPGT) is established. According to the structural characteristics of the DIMPG, the support structure of the planetary gear is designed based on CAD and CATIA. In the structural design of binary clutches, V-groove clutch parts are coupled to the transmission case, planetary carrier, and sun shaft, respectively, in each DIMPG.
Technical Paper

Research on the Classification and Identification for Personalized Driving Styles

2018-04-03
2018-01-1096
Most of the Advanced Driver Assistance System (ADAS) applications are aiming at improving both driving safety and comfort. Understanding human drivers' driving styles that make the systems more human-like or personalized for ADAS is the key to improve the system performance, in particular, the acceptance and adaption of ADAS to human drivers. The research presented in this paper focuses on the classification and identification for personalized driving styles. To motivate and reflect the information of different driving styles at the most extent, two sets, which consist of six kinds of stimuli with stochastic disturbance for the leading vehicles are created on a real-time Driver-In-the-Loop Intelligent Simulation Platform (DILISP) with PanoSim-RT®, dSPACE® and DEWETRON® and field test with both RT3000 family and RT-Range respectively.
Technical Paper

Research on Yaw Stability Control of Unmanned Vehicle Based on Integrated Electromechanical Brake Booster

2020-04-14
2020-01-0212
The Electromechanical Brake Booster system (EMBB) integrates active braking and energy recovery and becomes a novel brake-by-wire solution that substitutes the vacuum booster. While the intelligent unmanned vehicle is in unstable state, the EMBB can improve the vehicle yaw stability more quickly and safely. In this paper, a new type of integrated EMBB has been designed, which mainly includes two parts: servo motor unit and hydraulic control unit. Aiming at the dynamic instability problem of intelligent unmanned vehicle, a three-layer vehicle yaw stability control structure including decision layer, distribution layer and execution layer is proposed based on integrated EMBB. Firstly, the decision layer calculates the ideal yaw rate and the side slip angle of the vehicle with the classic 2DOF vehicle dynamics model. The boundary of the stable region is determined by the phase plane method and the additional yaw moment is determined by the feedback PI control algorithm.
Technical Paper

Research on High-efficiency Test Method of Vehicle AEB based on High-precision Detection of Radar Turntable Encoder

2021-10-11
2021-01-1273
With the increasingly complex traffic environment, the vehicle AEB system needs to go through a large number of testing processes, in order to drive more safely on the road. For speeding up the development process of AEB and solve the problems of long cycle, high cost and low efficiency in AEB testing, in this paper, a millimeter wave radar turntable is built, and a high-precision detection algorithm of turntable encoder is designed, at the same time, a test method of vehicle AEB based on the detection data of radar turntable encoder is designed. The verification results show that methods described in this paper can be used to develop the vehicle AEB test algorithm efficiently.
Technical Paper

Research on Control Strategy Optimization for Shifting Process of Pure Electric Vehicle Based on Multi-Objective Genetic Algorithm

2020-04-14
2020-01-0971
With more and more countries proposing timetables for stopping selling of fuel vehicles, China has also issued a “dual-slope” policy. As electric vehicles are the most promising new energy vehicle, which is worth researching. The integration and control of the motor and gearbox have gradually become a hot research topic due to low cost with better performance. This paper takes an electric vehicle equipped with permanent magnet synchronous motor and two-gear automatic transmission without synchronizer and clutch as the research object.
Journal Article

Research on Automatic Joint Calibration Method of Multi 3D-LIDARs and Inertial Measurement Unit

2021-04-06
2021-01-0070
In the field of automatic driving, the combination of 3D LIDAR and inertial measurement unit (IMU) is a common sensor configuration scheme in laser point-cloud localization, high-precision map making and point-cloud target detection. So it is critical to calibrate LIDAR and IMU accurately. At present, due to the large volume and high cost of 3D LIDAR with high-line-number(Such as 64 lines or 128 lines), the configuration scheme of using multiple low-line-number 3D LIDARs appears in the automatic driving vehicle sensing system. However, the common calibration methods are not suitable for multi 3D LIDARs and IMU parameters calibration on autonomous vehicle, which have the disadvantages of cumbersome implementation and low accuracy. In this paper, a joint calibration test platform composed of dual LIDARs and IMU is assembled, and a method of precise automatic calibration based on GPS/RTK data is proposed.
Technical Paper

Recognition and Classification of Vehicle Target Using the Vehicle-Mounted Velodyne LIDAR

2014-04-01
2014-01-0322
This paper describes a novel recognition and classification method of vehicle targets in urban road based on a vehicle-mounted Velodyne HDL64E light detection and ranging (LIDAR) system. The autonomous vehicle will choose different driving strategy according to the surrounding traffic environments to guarantee that the driving is safe, stable and efficient. It is helpful for controller to provide the efficient stagey to know the exact type of vehicle around. So this method concentrates on reorganization and classification the type of vehicle targets so that the controller can provide a safe and efficient driving strategy for autonomous ground vehicles. The approach is targeted at high-speed ground vehicle, so real-time performance of the method plays a critical role. In order to improve the real-time performance, some methods of data preprocessing should be taken to simplify the large-size long-range 3D point clouds.
Technical Paper

Optimization of Suspension System of Self-Dumping Truck Using TOPSIS-based Taguchi Method Coupled with Entropy Measurement

2016-04-05
2016-01-1385
This study presents a hybrid optimization approach of TOPSIS-based Taguchi method and entropy measurement for the determination of the optimal suspension parameters to achieve an enhanced compromise among ride comfort, road friendliness which means the extent of damage exerted on the road by the vehicles, and handling stabilities of a self-dumping truck. Firstly, the full multi-body dynamic vehicle model is developed using software ADAMS/Car and the vehicle model is then validated through ride comfort road tests. The performance criterion for ride comfort evaluation is identified as root mean square (RMS) value of frequency weighted acceleration of cab floor, while the road damage coefficient is used for the evaluation of the road-friendliness of a whole vehicle. The lateral acceleration and roll angle of cab were defined as evaluation indices for handling stability performance.
Technical Paper

Optimization of Bus Body Based on Vehicle Interior Vibration

2012-04-16
2012-01-0221
In order to solve the abnormal vibration of a light bus, order tracking analysis of finite element simulation and road test was made to identify the vibration source, finding that the rotation angular frequency of the wheels and the first two natural frequency of the body structure overlaps, resonance occurring which lead to increased vibration. To stagger the first two natural frequency and excitation frequency of the body, thickness of sheet metal and skeleton of the body-in-white were chosen as the design variables, rise of the first two natural frequency of the body-in-white as the optimization objective, optimal design and sensitivity analysis of the body-in-white was carried out with the modal analysis theory. Combining with the modal sensitivity and mass sensitivity of sheet metal and skeleton, the optimum design was achieved and tests analysis was conducted.
Journal Article

Optimization Matching of Powertrain System for Self-Dumping Truck Based on Grey Relational Analysis

2015-04-14
2015-01-0501
In this paper, the performance simulation model of a domestic self-dumping truck was established using AVL-Cruise software. Then its accuracy was checked by the power performance and fuel economy tests which were conducted on the proving ground. The power performance of the self-dumping truck was evaluated through standing start acceleration time from 0 to 70km/h, overtaking acceleration time from 60 to 70km/h, maximum speed and maximum gradeability, while the composite fuel consumption per hundred kilometers was taken as an evaluation index of fuel economy. A L9 orthogonal array was applied to investigate the effect of three matching factors including engine, transmission and final drive, which were considered at three levels, on the power performance and fuel economy of the self-dumping truck. Furthermore, the grey relational grade was proposed to assess the multiple performance responses according to the grey relational analysis.
Technical Paper

One Calculation Method of the Contact Load of a Two-Level Variable Stiffness Suspension

2015-03-10
2015-01-0042
This paper presented one calculation method of the contact load, which is the load acted on the spring at the moment when the second-level stiffness of the spring just begins to work. In the proposed method, the contact load calculation mainly based on the dynamic load of the unsprung mass and the road grades and the commonly driving speed were also considered. A semiempirical formula of the contact load was put forward. Then the contact load of the commercial bus's rear suspension was respectively calculated by using the proposed formula and traditional methods(geometric mean method and average load method) to compare each other and to verify the new method. Later, the spring samples were respectively manufactured based on the calculation results. At last, the validation tests were respectively performed in an automotive proving ground.
Technical Paper

Objective Evaluation Model of Automatic Transmission Shift Quality Based on Multi-Hierarchical Grey Relational Analysis

2018-04-03
2018-01-0405
Improvement of shift quality evaluation has become more prevalent over the past few years in the development of automatic transmission electronic control system. For the problems of the subjective shift quality evaluation that subjectivity is too strong, the standard cannot be unified and the definition of the objective evaluation index is not clear at present, this paper studies on the methods of objective evaluation of shift quality based on the multi-hierarchical grey relational analysis. Firstly, objective evaluation index system is constructed based on physical quantities, such as the engine speed, the longitudinal acceleration of the vehicle and so on, which broadens the scope of the traditional objective evaluation index further.
Journal Article

Multi-task Learning of Semantics, Geometry and Motion for Vision-based End-to-End Self-Driving

2021-04-06
2021-01-0194
It’s hard to achieve complete self-driving using hand-crafting generalized decision-making rules, while the end-to-end self-driving system is low in complexity, does not require hand-crafting rules, and can deal with complex situations. Modular-based self-driving systems require multi-task fusion and high-precision maps, resulting in high system complexity and increased costs. In end-to-end self-driving, we usually only use camera to obtain scene status information, so image processing is very important. Numerous deep learning applications benefit from multi-task learning, as the multi-task learning can accelerate model training and improve accuracy with combine all tasks into one model, which reduces the amount of calculation and allows these systems to run in real-time. Therefore, the approach of obtaining rich scene state information based on multi-task learning is very attractive. In this paper, we propose an approach to multi-task learning for semantics, geometry and motion.
Technical Paper

Lidar Inertial Odometry and Mapping for Autonomous Vehicle in GPS-Denied Parking Lot

2020-04-14
2020-01-0103
High-precision and real-time ego-motion estimation is vital for autonomous vehicle. There is a lot GPS-denied maneuver such as underground parking lot in urban areas. Therefore, the localization system relying solely on GPS cannot meets the requirements. Recently, lidar odometry and visual odometry have been introduced into localization systems to overcome the problem of missing GPS signals. Compared with visual odometry, lidar odometry is not susceptible to light, which is widely applied in weak-light environments. Besides, the autonomous parking is highly dependent on the geometric information around the vehicle, which makes building map of surroundings essential for autonomous vehicle. We propose a lidar inertial odometry and mapping. By sensor fusion, we compensate for the drawback of applying a single sensor, allowing the system to provide a more accurate estimate.
X