Refine Your Search

Topic

Search Results

Technical Paper

Yaw/Roll Stability Modeling and Control of HeavyTractor-SemiTrailer

2007-08-05
2007-01-3574
This paper sets up a simplified dynamic model for simulating the yaw/roll stability of heavy tractor-semitrailer using Matlab/Simulink. A linear quadratic regulator (LQR) based on partial-state feedback controller is used to optimize the roll stability of the vehicle. The control objective for optimizing roll stability is to be reducing the lateral load transfer rate while keeping the suspension angle less than the maximum allowable angle. The simulation result shows that the LQR controller is effective in the active roll stability control of the heavy tractor-semitrailer.
Technical Paper

Trajectory Planning and Tracking for Four-Wheel-Steering Autonomous Vehicle with V2V Communication

2020-04-14
2020-01-0114
Lane-changing is a typical traffic scene effecting on road traffic with high request for reliability, robustness and driving comfort to improve the road safety and transportation efficiency. The development of connected autonomous vehicles with V2V communication provide more advanced control strategies to research of lane-changing. Meanwhile, four-wheel steering is an effective way to improve flexibility of vehicle. The front and rear wheels rotate in opposite direction to reduce the turning radius to improve the servo agility operation at the low speed while those rotate in same direction to reduce the probability of the slip accident to improve the stability at the high speed. Hence, this paper established Four-Wheel-Steering(4WS) vehicle dynamic model and quasi real lane-changing scenes to analyze the motion constraints of the vehicles.
Technical Paper

The Effect of Multi-Universal Coupling Phase on Torsional Vibration of Drive Shaft and Vibration of Vehicle

2013-04-08
2013-01-1490
Torsional vibration of drive shaft has great influence on the vibration of vehicle. Reasonable phase arrangement of multi-universal coupling can attenuate vibration. In this paper, theoretical model of drive shaft with planar multi-cross universal coupling was established; the optimization scheme of the phase arrangement of multi-cross universal coupling was presented. The results of test validation and simulation show that the optimization scheme is effective and reasonable. The results of test validation and simulation show that the optimization scheme was effective and reasonable and the optimized scheme could solve the abnormal vibration on floor. Arranging phases of universal joints reasonably is very significative for attenuate the torsional vibration of drive shaft and the floor vibration.
Technical Paper

The Algorithmic Research of Multi-operating Mode Energy Management System

2013-04-08
2013-01-0988
The traditional energy management algorithm is mainly based on a single driving cycle, it is obvious that many factors might be often neglected by designer, such as different driving cycles would suit for different control strategies. But they tend to make decisions on the balance of torque distribution and battery power that based on a single driving cycle. Therefore, it is very difficult to achieve the optimal control in each case. In this paper we introduce a new design concept of Multi-operating mode energy management, a mathematical model of the energy management applied to a hybrid vehicle system is presented. Results of simulations using the model with the Multi-operating mode energy management were compared with results of simulations using a model with the single mode energy management, allowing the energy efficiency evaluation of the proposed energy management system.
Technical Paper

Study on Dynamic Characteristics and Control Methods for Drive-by-Wire Electric Vehicle

2014-09-30
2014-01-2291
A full drive-by-wire electric vehicle, named Urban Future Electric Vehicle (UFEV) is developed, where the four wheels' traction and braking torques, four wheels' steering angles, and four active suspensions (in the future) are controlled independently. It is an ideal platform to realize the optimal vehicle dynamics, the marginal-stability and the energy-efficient control, it is also a platform for studying the advanced chassis control methods and their applications. A centralized control system of hierarchical structure for UFEV is proposed, which consist of Sensor Layer, Identification and Estimation Layer, Objective Control Layer, Forces and Motion Distribution Layer, Executive Layer. In the Identification and Estimation Layer, identification model is established by utilizing neural network algorithms to identify the driver characteristics. Vehicle state estimation and road identification of UFEV based on EKF and Fuzzy Logic Control methods is also conducted in this layer.
Technical Paper

Structure Optimization and Interior Noise Reduction of Commercial Vehicle Cab

2012-09-24
2012-01-1928
In order to improve ride comfort and reduce interior noise of commercial vehicles, modal sensitivity analysis and optimization design of a commercial vehicle cab was carried out, which increased the first natural frequency of the optimized cab by 23.96%. The result of cab modal test verified the correctness of the finite element model and the effectiveness of the improving method. The structure-acoustic coupling model of the cab was established, and the acoustic response of the coupled sound field was predicted. The sound pressure level of the optimized cab was reduced. In comparison of the optimized cab with the original one, the optimization scheme was confirmed to be effective and reasonable.
Technical Paper

Spatio-Temporal Trajectory Planning Using Search And Optimizing Method for Autonomous Driving

2024-04-09
2024-01-2563
In the field of autonomous driving trajectory planning, it’s virtual to ensure real-time planning while guaranteeing feasibility and robustness. Current widely adopted approaches include decoupling path planning and velocity planning based on optimization method, which can’t always yield optimal solutions, especially in complex dynamic scenarios. Furthermore, search-based and sampling-based solutions encounter limitations due to their low resolution and high computational costs. This paper presents a novel spatio-temporal trajectory planning approach that integrates both search-based planning and optimization-based planning method. This approach retains the advantages of search-based method, allowing for the identification of a global optimal solution through search. To address the challenge posed by the non-convex nature of the original solution space, we introduce a spatio-temporal semantic corridor structure, which constructs a convex feasible set for the problem.
Technical Paper

Sound Absorption Optimization of Porous Materials Using BP Neural Network and Genetic Algorithm

2016-04-05
2016-01-0472
In recent years, the interior noise of automobile has been becoming a significant problem. In order to reduce the noise, porous materials have been widely applied in automobile manufacturing. In this study, the simulation method and optimal analysis are used to determine the optimum sound absorption of polyurethane foam. The experimental simulation is processed based on the Johnson-Allard model. In the model, the foam adheres to a hard wall. The incident wave is plane wave. The function of the model is to calculate the noise reduction coefficient of polyurethane foam with different thickness, density and porosity. The back propagation neural network coupled with genetic optimization technique is utilized to predict the optimum sound absorption. A developed back propagation neural network model is trained and tested by the simulation data.
Technical Paper

Research on the Control Strategy of Trailer Tracking Tractor for Articulated Heavy Vehicles

2019-11-04
2019-01-5054
The purpose of this paper is to improve the path-following capability and high-speed lateral stability of the articulated heavy vehicles (AHVs). The six-axle heavy articulated vehicle was taken as the research object, in order to simplify the control design, the three-axle trailer of the articulated vehicles was simplified to a single-axle trailer. The Newton's second law was applied to the tractor unit and the single-axle trailer unit respectively, a three-degree-of-freedom vehicle yaw plane model was established, and its state space equation was derived. The trailer steering controller was designed by linear quadratic regulator (LQR) technique. At the same time, the optimal index function was determined by combining the vehicle state variables, and the optimal control input was obtained by using the algebraic Riccati equation.
Technical Paper

Research on Control Strategy Optimization for Shifting Process of Pure Electric Vehicle Based on Multi-Objective Genetic Algorithm

2020-04-14
2020-01-0971
With more and more countries proposing timetables for stopping selling of fuel vehicles, China has also issued a “dual-slope” policy. As electric vehicles are the most promising new energy vehicle, which is worth researching. The integration and control of the motor and gearbox have gradually become a hot research topic due to low cost with better performance. This paper takes an electric vehicle equipped with permanent magnet synchronous motor and two-gear automatic transmission without synchronizer and clutch as the research object.
Journal Article

Research on Automatic Joint Calibration Method of Multi 3D-LIDARs and Inertial Measurement Unit

2021-04-06
2021-01-0070
In the field of automatic driving, the combination of 3D LIDAR and inertial measurement unit (IMU) is a common sensor configuration scheme in laser point-cloud localization, high-precision map making and point-cloud target detection. So it is critical to calibrate LIDAR and IMU accurately. At present, due to the large volume and high cost of 3D LIDAR with high-line-number(Such as 64 lines or 128 lines), the configuration scheme of using multiple low-line-number 3D LIDARs appears in the automatic driving vehicle sensing system. However, the common calibration methods are not suitable for multi 3D LIDARs and IMU parameters calibration on autonomous vehicle, which have the disadvantages of cumbersome implementation and low accuracy. In this paper, a joint calibration test platform composed of dual LIDARs and IMU is assembled, and a method of precise automatic calibration based on GPS/RTK data is proposed.
Technical Paper

Research on Artificial Potential Field based Soft Actor-Critic Algorithm for Roundabout Driving Decision

2024-04-09
2024-01-2871
Roundabouts are one of the most complex traffic environments in urban roads, and a key challenge for intelligent driving decision-making. Deep reinforcement learning, as an emerging solution for intelligent driving decisions, has the advantage of avoiding complex algorithm design and sustainable iteration. For the decision difficulty in roundabout scenarios, this paper proposes an artificial potential field based Soft Actor-Critic (APF-SAC) algorithm. Firstly, based on the Carla simulator and Gym framework, a reinforcement learning simulation system for roundabout driving is built. Secondly, to reduce reinforcement learning exploration difficulty, global path planning and path smoothing algorithms are designed to generate and optimize the path to guide the agent.
Technical Paper

Parametric Investigation of Two-Stage Pilot Diesel Injection on the Combustion and Emissions of a Pilot Diesel Compression Ignition Natural Gas Engine at Low Load

2020-06-23
2020-01-5056
The purpose of this study is to evaluate the impact of two-stage pilot injection parameters on the combustion and emissions of pilot diesel compression ignition natural gas (CING) engine at low load. Experiments were performed using a diesel/natural gas dual-fuel engine, which was modified from a six-cylinder diesel engine. The effect of injection timing and injection pressure of two-stage pilot diesel were analyzed in order to reduce both the fuel consumption and total hydrocarbon (HC) and carbon monoxide (CO) emissions under low load conditions. The results indicate that, because injection timing can determine the degree of pilot diesel stratification, in-cylinder thermodynamic state, and the available mixing time prior to the combustion, the combustion process can be controlled and optimized through adjusting injection timing.
Technical Paper

Optimization of Vehicle Ride Comfort and Handling Stability Based on TOPSIS Method

2015-04-14
2015-01-1348
A detailed multi-body dynamic model of a passenger car was modeled using ADAMS/Car and then checked by the ride comfort and handling stability test results in this paper. The performance criterion for ride comfort evaluation was defined as the overall weighted acceleration root mean square (RMS) value of car body floor, while the roll angle and lateral acceleration of car body were considered as evaluation indicators for handling stability performance. Simultaneously, spring stiffness and shock absorber damping coefficients of the front and rear suspensions were taken as the design variables (also called factors), which were considered at three levels. On this basis, a L9 orthogonal array was employed to perform the ride and handling simulations.
Technical Paper

Optimization of Suspension System of Self-Dumping Truck Using TOPSIS-based Taguchi Method Coupled with Entropy Measurement

2016-04-05
2016-01-1385
This study presents a hybrid optimization approach of TOPSIS-based Taguchi method and entropy measurement for the determination of the optimal suspension parameters to achieve an enhanced compromise among ride comfort, road friendliness which means the extent of damage exerted on the road by the vehicles, and handling stabilities of a self-dumping truck. Firstly, the full multi-body dynamic vehicle model is developed using software ADAMS/Car and the vehicle model is then validated through ride comfort road tests. The performance criterion for ride comfort evaluation is identified as root mean square (RMS) value of frequency weighted acceleration of cab floor, while the road damage coefficient is used for the evaluation of the road-friendliness of a whole vehicle. The lateral acceleration and roll angle of cab were defined as evaluation indices for handling stability performance.
Technical Paper

Optimization of Bus Body Based on Vehicle Interior Vibration

2012-04-16
2012-01-0221
In order to solve the abnormal vibration of a light bus, order tracking analysis of finite element simulation and road test was made to identify the vibration source, finding that the rotation angular frequency of the wheels and the first two natural frequency of the body structure overlaps, resonance occurring which lead to increased vibration. To stagger the first two natural frequency and excitation frequency of the body, thickness of sheet metal and skeleton of the body-in-white were chosen as the design variables, rise of the first two natural frequency of the body-in-white as the optimization objective, optimal design and sensitivity analysis of the body-in-white was carried out with the modal analysis theory. Combining with the modal sensitivity and mass sensitivity of sheet metal and skeleton, the optimum design was achieved and tests analysis was conducted.
Technical Paper

Optimization for Driveline Parameters of Self-Dumping Truck Based on Particle Swarm Algorithm

2015-04-14
2015-01-0472
In this study, with the aim of reducing fuel consumption and improving power performance, the optimization for the driveline parameters of a self-dumping truck was performed by using a vehicle performance simulation model. The accuracy of this model was checked by the power performance and fuel economy tests. Then the transmission ratios and final drive ratio were taken as design variables. Meanwhile, the power performance of the self-dumping truck was evaluated through standing start acceleration time from 0 to 70km/h, maximum speed and maximum gradeability, while the combined fuel consumption of C-WTVC drive cycle was taken as an evaluation index of fuel economy. The multi-objective optimization for the power performance and fuel economy was then performed based on particle swarm optimization algorithm, and the Pareto optimal set was obtained. Furthermore, the entropy method was proposed to determine the weight of fuel consumption and acceleration time.
Journal Article

Optimization Matching of Powertrain System for Self-Dumping Truck Based on Grey Relational Analysis

2015-04-14
2015-01-0501
In this paper, the performance simulation model of a domestic self-dumping truck was established using AVL-Cruise software. Then its accuracy was checked by the power performance and fuel economy tests which were conducted on the proving ground. The power performance of the self-dumping truck was evaluated through standing start acceleration time from 0 to 70km/h, overtaking acceleration time from 60 to 70km/h, maximum speed and maximum gradeability, while the composite fuel consumption per hundred kilometers was taken as an evaluation index of fuel economy. A L9 orthogonal array was applied to investigate the effect of three matching factors including engine, transmission and final drive, which were considered at three levels, on the power performance and fuel economy of the self-dumping truck. Furthermore, the grey relational grade was proposed to assess the multiple performance responses according to the grey relational analysis.
Technical Paper

Optimal Anti-vibration Design of Vehicle-mounted Vibration Isolation Platform

2018-04-03
2018-01-1400
A vehicle-mounted anti-vibration system is designed to semi-actively reduce accelerations acting on vibration isolation platform under different road conditions. To provide the basis for optimal anti-vibration design, the kinematics and dynamics of the platform are analyzed to investigate the relationship between leg length, strength, the platform position and vibration properties. As the platform is fixed on vehicle, a combined vehicle-platform model is necessary for verifying the performance and applying some suitable control algorithms. Also, typical digital testing roads will be built using road load spectrum. To optimize the platform parameters, especially stiffness and damping, an active control system is designed at first. An anti-vibration system including a semi-active inerter is designed to match the control forces which are calculated from the above active system.
Technical Paper

Multi-Objective Optimization of Interior Noise of an Automotive Body Based on Different Surrogate Models and NSGA-II

2018-04-03
2018-01-0146
This paper studies a multi-objective optimization design of interior noise for an automotive body. An acoustic-structure coupled model with materials and properties was established to predict the interior noise based on a passenger car. Moreover, three kinds of approximation models related damping thickness and the root mean square of the driver’s ear sound pressure level were established through Latin hypercube method and the corresponding experiments. The prediction accuracy was analyzed and compared for the approximate response surface model, Kriging model and Radial Basis Function neural network model. On this basis, multi-objective optimization of the vehicle interior noise was conducted by using NSGA-II. According to the optimization results, the damping composite structure was applied on the car body structure. Then, the comparison of sound pressure level response at driver’s ear location before and after optimization was performed at speed of 60 km/h on a smooth road.
X