Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Virtual Simulation Research on Vehicle Ride Comfort

2006-10-31
2006-01-3499
In this paper, a computer model of a multi-purpose vehicle (MPV) is built to study vehicle ride comfort by multi-body system dynamic theory. Virtual test rigs are developed to perform natural body frequency tests and random road input tests on the complete vehicle multi-body dynamic model. By comparing simulation results with field test results, the accuracy of the model is validated and the feasibility of virtual test rigs is established.
Journal Article

Vehicle Longitudinal Control Algorithm Based on Iterative Learning Control

2016-04-05
2016-01-1653
Vehicle Longitudinal Control (VLC) algorithm is the basis function of automotive Cruise Control system. The main task of VLC is to achieve a longitudinal acceleration tracking controller, performance requirements of which include fast response and high tracking accuracy. At present, many control methods are used to implement vehicle longitudinal control. However, the existing methods are need to be improved because these methods need a high accurate vehicle dynamic model or a number of experiments to calibrate the parameters of controller, which are time consuming and costly. To overcome the difficulties of controller parameters calibration and accurate vehicle dynamic modeling, a vehicle longitudinal control algorithm based on iterative learning control (ILC) is proposed in this paper. The algorithm works based on the information of input and output of the system, so the method does not require a vehicle dynamics model.
Technical Paper

Unstructured Road Region Detection and Road Classification Algorithm Based on Machine Vision

2023-04-11
2023-01-0061
Accurate sensing of road conditions is one of the necessary technologies for safe driving of intelligent vehicles. Compared with the structured road, the unstructured road has complex road conditions, and the response characteristics of vehicles under different road conditions are also different. Therefore, accurately identifying the road categories in front of the vehicle in advance can effectively help the intelligent vehicle timely adjust relevant control strategies for different road conditions and improve the driving comfort and safety of the vehicle. However, traditional road identification methods based on vehicle kinematics or dynamics are difficult to accurately identify the road conditions ahead of the vehicle in advance. Therefore, this paper proposes an unstructured road region detection and road classification algorithm based on machine vision to obtain the road conditions ahead.
Technical Paper

Unsteady Flow Control and Wind Noise Reduction of Side-View Mirror

2018-04-03
2018-01-0744
It aims to study the unsteady flow characteristic of the side-view mirror wake field, and reduce the wind noise by means of unsteady flow control. In this paper, the PIV test in a wind tunnel is used to capture the unsteady flow in the wake field of the side-view mirror, which is used to verify the accuracy of the steady simulation method with RANS after being averaged. Then LES turbulence model is used to obtain the wind noise, and the unsteady flow characteristic like vortex shedding of the side-view mirror is studied. The results show that, in the wake of the side-view mirror, there is a vortex pair similar to Karman Vortex Street. In both horizontal and vertical sections, these two vortexes are respectively separated from the upper and lower edges of the side-view mirror. Accompanied by a significantly uncertain periodic shedding, they continue to extend back until dissipating.
Technical Paper

Traffic Modeling Considering Motion Uncertainties

2017-09-23
2017-01-2000
Simulation has been considered as one of the key enablers on the development and testing for autonomous driving systems as in-vehicle and field testing can be very time-consuming, costly and often impossible due to safety concerns. Accurately modeling traffic, therefore, is critically important for autonomous driving simulation on threat assessment, trajectory planning, etc. Traditionally when modeling traffic, the motion of traffic vehicles is often considered to be deterministic and modeled based on its governing physics. However, the sensed or perceived motion of traffic vehicles can be full of errors or inaccuracy due to the inaccurate and/or incomplete sensing information. In addition, it is naturally true that any future trajectories are unknown. This paper proposes a novel modeling method on traffic considering its motion uncertainties, based on Gaussian process (GP).
Technical Paper

Time Series Modeling of Terrain Profiles

2005-11-01
2005-01-3561
Every time we measure the terrain profiles we would get a different set of data due to the measuring errors and due to the fact that the linear tracks on which the measuring vehicle travels can not be exactly the same every time. However the data collected at different times from the same terrain should share the similar intrinsic properties. Hence it is natural to consider statistical modeling of the terrain profiles. In this paper we shall use the time series models with time being the distance from the starting point. We receive data from the Belgian Block and the Perryman3 testing tracks. The Belgian Block data are shown to behave like a uniformly modulated process([7]), i.e. it is the product of a deterministic function and a stationary process. The modeling of the profiles can be done by estimating the deterministic function and fit the stationary process with a well-known ARMA model. The Perryman3 data are more irregular.
Technical Paper

The Simulation of Single Cylinder Intake and Exhaust Systems

1967-02-01
670478
A detailed description of a numerical method for computing unsteady flows in engine intake and exhaust systems is given. The calculations include the effects of heat transfer and friction. The inclusion of such calculations in a mathematically simulated engine cycle is discussed and results shown for several systems. In particular, the effects of bell-mouth versus plain pipe terminations and the effects of a finite surge tank are calculated. Experimental data on the effect of heat transfer from the back of the intake valve on wave damping are given and show the effect to be negligible. Experimental data on wave damping during the valve closed period and on the temperature rise of the air near the valve are also given.
Technical Paper

The Radiant and Convective Components of Diesel Engine Heat Transfer

1963-01-01
630148
The ratio of two temperature gradients across the combustion-chamber wall in a diesel engine is used to provide a heat flow ratio showing the radiant heat transfer as a per cent of local total heat transfer. The temperature gradients were obtained with a thermocouple junction on each side of the combustion-chamber wall. The first temperature gradient was obtained by covering the thermocouple at the cylinder gas-wall interface with a thin sapphire window, while the second was obtained without the window. Results show that the time-average radiant heat transfer is of significant magnitude in a diesel engine, and is probably even more significant in heat transfer during combustion and expansion.
Technical Paper

The Integrated Control of SBW and 4WS

2007-08-05
2007-01-3674
Steer-by-wire System is a new conception for steering system, which eliminates those mechanical linkages between hand steering wheel and front wheels, and communicates among the driver and wheels by signals and controllers. All these facilities improve the safety and conformability of the vehicle system and get rid of the mechanical constricts. This paper proposed three vehicle stability control strategies, including front wheel control, yaw rate feedback control and yaw rate& acceleration feedback control. We compared these three control methods by simulation and simulator tests. We also studied the integrated control algorithm of Steer-by-Wire System and 4WS, and compared with 2WS for SBW and the classical 4WS.
Technical Paper

The Effect of Injection Pressure on Air Entrainment into Transient Diesel Sprays

1999-03-01
1999-01-0523
The objective of this research was to investigate the effect of injection pressure on air entrainment into transient diesel sprays. The main application of interest was the direct injection diesel engine. Particle Image Velocimetry was used to make measurements of the air entrainment velocities into a spray plume as a function of time and space. A hydraulically actuated, electronically controlled unit injector (HEUI) system was used to supply the fuel into a pressurized spray chamber. The gas chamber density was maintained at 27 kg/m3. The injection pressures that were studied in this current research project were 117.6 MPa and 132.3 MPa. For different injection pressures, during the initial two-thirds of the spray plume there was little difference in the velocities normal to the spray surface. For the last third of the spray plume, the normal velocities were 125% higher for the high injection pressure case.
Journal Article

The Effect of HCHO Addition on Combustion in an Optically Accessible Diesel Engine Fueled with JP-8

2010-10-25
2010-01-2136
Under the borderline autoignition conditions experienced during cold-starting of diesel engines, the amount and composition of residual gases may play a deterministic role. Among the intermediate species produced by misfiring and partially firing cycles, formaldehyde (HCHO) is produced in significant enough amounts and is sufficiently stable to persist through the exhaust and intake strokes to kinetically affect autoignition of the following engine cycle. In this work, the effect of HCHO addition at various phases of autoignition of n-heptane-air mixtures is kinetically modeled. Results show that HCHO has a retarding effect on the earliest low-temperature heat release (LTHR) phase, largely by competition for hydroxyl (OH) radicals which inhibits fuel decomposition. Conversely, post-LTHR, the presence of HCHO accelerates the occurrence of high-temperature ignition.
Journal Article

The Dimensional Model of Driver Demand: Visual-Manual Tasks

2016-04-05
2016-01-1423
Many metrics have been used in an attempt to predict the effects of secondary tasks on driving behavior. Such metrics often give rise to seemingly paradoxical results, with one metric suggesting increased demand and another metric suggesting decreased demand for the same task. For example, for some tasks, drivers maintain their lane well yet detect events relatively poorly. For other tasks, drivers maintain their lane relatively poorly yet detect events relatively well. These seeming paradoxes are not time-accuracy trade-offs or experimental artifacts, because for other tasks, drivers do both well. The paradoxes are resolved if driver demand is modeled in two orthogonal dimensions rather than a single “driver workload” dimension. Principal components analysis (PCA) was applied to the published data from four simulator, track, and open road studies of visual-manual secondary task effects on driving.
Journal Article

The Combined Effect of HCHO and C2H4 Addition on Combustion in an Optically Accessible Diesel Engine Fueled with JP-8

2011-04-12
2011-01-1392
Misfiring or partial combustion during diesel engine operation results in the production of partial oxidation products such as ethylene (C₂H₄), carbon monoxide and aldehydes, in particular formaldehyde (HCHO). These compounds remain in the cylinder as residual gases to participate in the following engine cycle. Carbon monoxide and formaldehyde have been shown to exhibit a dual nature, retarding ignition in one temperature regime, yet decreasing ignition delay periods of hydrocarbon mixtures as temperatures exceed 1000°K. Largely unknown is the synergistic effects of such species. In this work, varying amounts of C₂H₄ and HCHO are added to the intake air of a naturally aspirated optical diesel engine and their combined effect on autoignition and subsequent combustion is examined. To observe the effect of these dopants on the low-temperature heat release (LTHR), ultraviolet chemiluminescent images are recorded using intensified CCD cameras.
Technical Paper

Support Vector Machine Theory Based Shift Quality Assessment for Automated Mechanical Transmission (AMT)

2007-04-16
2007-01-1588
In China there is a strong trend in the application of vehicles equipped with automatic transmissions in considering the complexity of traffic and the convenience of automatic transmissions. As a type of automatic transmission, automated mechanical transmission (AMT) shows great potential to be developed as a main transmission because of its simple structures, easy upgrade from manual transmission (MT) and low price. Support Vector Machine (SVM) is a new statistic method which could make a good prediction with limited training instances. Compared with Artificial Neutral Network (ANN), SVM can provide better genetic ability. In order to verify the ability of the new method, the model trained by one set of AMT car data was applied on some other AMT vehicles, and the predicted results were compared with subjective rating results by expert drivers and analyzed to identify the potential of this new assessment system.
Technical Paper

Study on the Algorithm of Active Pressurization Control of Regenerative Braking System in Pure Electric Vehicle

2015-09-27
2015-01-2708
During the vehicle braking, the Regenerative braking system (RBS) transforms the kinetic energy into electric power, storing it in the power sources. To secure the baking process, it is required to use hydraulic braking pressure to coordinately compensate the regenerative braking pressure. The traditional hydraulic pressure control algorithm which is used in regenerative braking system coordinated control has obvious laddering effect in braking. Unit control cycle pressure deviations seriously affect the comfort and the braking feeling on the vehicle.
Technical Paper

Study of Muscle Activation of Driver’s Lower Extremity at the Collision Moment

2016-04-05
2016-01-1487
At the collision moment, a driver’s lower extremity will be in different foot position, which leads to the different posture of the lower extremity with various muscle activations. These will affect the driver’s injury during collision, so it is necessary to investigate further. A simulated collision scene was constructed, and 20 participants (10 male and 10 female) were recruited for the test in a driving simulator. The braking posture and muscle activation of eight major muscles of driver’s lower extremity (both legs) were measured. The muscle activations in different postures were then analyzed. At the collision moment, the right leg was possible to be on the brake (male, 40%; female, 45%), in the air (male, 27.5%; female, 37.5%) or even on the accelerator (male, 25%; female, 12.5%). The left leg was on the floor all along.
Technical Paper

Studies on Drivers’ Driving Styles Based on Inverse Reinforcement Learning

2018-04-03
2018-01-0612
Although advanced driver assistance systems (ADAS) have been widely introduced in automotive industry to enhance driving safety and comfort, and to reduce drivers’ driving burden, they do not in general reflect different drivers’ driving styles or customized with individual personalities. This can be important to comfort and enjoyable driving experience, and to improved market acceptance. However, it is challenging to understand and further identify drivers’ driving styles due to large number and great variations of driving population. Previous research has mainly adopted physical approaches in modeling drivers’ driving behavior, which however are often very much limited, if not impossible, in capturing human drivers’ driving characteristics. This paper proposes a reinforcement learning based approach, in which the driving styles are formulated through drivers’ learning processes from interaction with surrounding environment.
Technical Paper

Spray Dynamics of High Pressure Fuel Injectors for DI Gasoline Engines

1996-10-01
961925
An experimental study was made to investigate the spray characteristics of high pressure fuel injectors for direct-injection gasoline engines. The global spray development process was visualized using two-dimensional laser Mie scattering technique. The spray atomization process was characterized by Phase Doppler particle analyzer. The transient spray development process was investigated under different fuel injection conditions as a function of the time after the fuel injection start. The effects of injector design, fuel injection pressure, injection duration, ambient pressure, and fuel property on the spray breakup and atomization characteristics were studied in details. Two clear counter-rotating recirculation zones are observed at the later stage or after the end of fuel injection inside the fuel sprays with a small momentum. The circumferential distribution of the spray from the large-angle injector is quite irregular and looks like a star with several wings projected out.
Technical Paper

Spectral Analysis and Chemiluminescence Imaging of Hydrogen Addition to HSDI Diesel Combustion Under Conventional and Low-Temperature Conditions

2004-10-25
2004-01-2919
Late-injection low-temperature diesel combustion is found to further reduce NOx and soot simultaneously. The combustion phenomena and detail chemical kinetics are studied with high speed spray/combustion images and time-resolved spectroscopy analysis in a rapid compression machine (RCM) with a small bowl combustion chamber. High swirl and high EGR condition can be achieved in the RCM; variable injection pressure and injection timing is supplied by the high-pressure common-rail fuel injection system. Effect of small amount of premix hydrogen gas on diesel combustion is also studied in the RCM. A hydrogen injector is located in the upstream of air inlet for delivery small amount and premixed hydrogen gas into cylinder just before the compression stroke. The ignition delay is studied both from the pressure curves and the chemiluminescence images.
Technical Paper

Simulation of a Crankcase Scavenged, Two-Stroke, SI Engine and Comparisons with Experimental Data

1969-02-01
690135
A detailed mathematical model of the thermodynamic events of a crankcase scavenged, two-stroke, SI engine is described. The engine is divided into three thermodynamic systems: the cylinder gases, the crankcase gases, and the inlet system gases. Energy balances, mass continuity equations, the ideal gas law, and thermodynamic property relationships are combined to give a set of coupled ordinary differential equations which describe the thermodynamic states encountered by the systems of the engine during one cycle of operation. A computer program is used to integrate the equations, starting with estimated initial thermodynamic conditions and estimated metal surface temperatures. The program iterates the cycle, adjusting the initial estimates, until the final conditions agree with the beginning conditions, that is, until a cycle results.
X