Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Verification Testing of the 1970 Anti-Theft Steering Column

1970-02-01
700582
This paper outlines the key elements in a laboratory reliability verification test program for an automotive sub-system. Many of these elements are described in some detail through the various stages of development from prototype concept to production. By means of an actual case study, verification testing of the 1970 Ford Anti-Theft Steering Column, steps required to design tests which yield meaningful information and the rationale used to analyze the results are presented. The steering column on a late model automobile is a complex system which combines several functions and features; steering, shifting, warning devices (turn signal and emergency flashers), ignition switch, anti-theft devices plus several safety features. The effectiveness of the overall verification program is evaluated through the presentation of actual field-feedback results.
Technical Paper

Vehicle Electrical System Computer Aided Design (VESCAD) Tool

1993-03-01
930841
The Vehicle Electrical System Computer Aided Design (VESCAD) tool is a means by which the vehicle electrical system, including all wiring and the components attached to wiring can be laid out over an outline of the planform (looking down on the vehicle) view of the vehicle. This graphical representation of the vehicle electrical system is linked to a database that contains the definition of all the wiring of the vehicle plus electrical component attributes. The vehicle electrical system can be composed and completely manipulated graphically, using a mouse, and the database is dynamically changed, including automatic re-routing of the wiring in the wiring harnesses. A complete series of reports can be generated once a vehicle electrical system is configured using VESCAD. All of the reports can be keyed by component(s), harness(es), subsystem(s) or the entire vehicle.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Technical Paper

U.S. Automotive Corrosion Trends at 5 & 6 Years

1989-12-01
892578
In 1985, the Body Division of the Automotive Corrosion and Prevention Committee of SAE (ACAP) concluded that an automotive body corrosion survey for public consumption was needed. The committee proceeded to develop a survey methodology and conducted surveys in the Detroit area every second year starting in 1985. The survey is a closed car parking lot survey of nineteen panels or partial panels checking for perforations, blisters and surface rust. Similar surveys have and will continue to be conducted at biyearly intervals for comparison purposes to track the results of industry wide corrosion protection “improvements”. This is a report of the results of the first three surveys. THE ACAP COMMITTEE BODY DIVISION has now completed the third in its series of biyearly surveys. It is now possible to see some very clear results of industry actions and some indication of future performance.
Technical Paper

Two Alternative, Dielectric-Effect, Flexible-Fuel Sensors

1992-02-01
920699
This paper describes two types of dielectric-effect sensors that may be used as alternatives to a dielectric-effect sensor using a single capacitor. In the first type, three capacitors are mounted in a compact module inserted into a vehicle fuel line. The three capacitors are connected together to form an electrical pi-filter network. This approach provides a large variation of output signal as the fuel changes from gasoline to methanol. The sensor can be designed to operate in the 1 to 20 MHz frequency range. The second type of sensor investigated uses a resonant-cavity structure. Ordinarily, sensors based on resonant cavities are useful only if the operating frequency is several hundred MHz or higher. The high relative dielectric constant of methanol allows useful sensors to be built using relatively short lengths of metal tubing for the cavities. For example, a sensor built using a fuel rail only 38.7 cm long operated in a frequency range from 31 to 52 MHz.
Technical Paper

Transient Heat Transfer of 42V Ni-MH Batteries for an HEV Application

2002-06-03
2002-01-1964
While a Ni-MH battery has good performance properties, such as a high power density and no memory effect, it needs a powerful thermal management system to maintain within the required narrow thermal operating range for the 42V HEV applications. Inappropriate battery temperatures result in degradation of the battery performance and life. For the battery cooling system, air is blown into the battery pack. The exhaust is then vented outside due to potential safety issues with battery emissions. This cooling strategy can significantly impact fuel economy and cabin climate control. This is particularly true when the battery is experiencing frequent charge and discharge of high-depths in extreme hot or cold weather conditions. To optimize performance and life of HEV traction batteries, the battery cooling design must keep the battery operation temperature below a maximum value and uniform across the battery cells.
Technical Paper

Topology Optimization Design on Cooling-Plate for Lithium-ion Battery Based on Electro-Thermal Model

2023-04-11
2023-01-0506
A flow channel design of the battery liquid cooling plate is carried out through the variable density topology optimization method according to the heat dissipation requirements of lithium-ion power batteries under actual working conditions. Firstly, given the non-uniform heat generation of lithium battery cells, the heat generation mechanism is studied so that the battery electro-thermal model is established, then the distribution regularity of heat generation rate in the cell at different discharge rates is obtained. Subsequently, through COMSOL Multiphysics simulation software, the multi-objective topology optimization of the primary configuration radiator is conducted. The weights of the optimization objectives minimum temperature and minimum flow resistance are determined by practical engineering application. Finally, an optimized model with a volume fraction of 50% was obtained.
Technical Paper

Time-Resolved Measurement of Speciated Hydrocarbon Emissions During Cold Start of a Spark-Ignited Engine

1994-03-01
940963
Speciated HC emissions from the exhaust system of a production engine without an active catalyst have been obtained with 3 sec time resolution during a 70°F cold start using two control strategies. For the conventional cold start, the emissions were initially enriched in light fuel alkanes and depleted in heavy aromatic species. The light alkanes fell rapidly while the lower vapor pressure aromatics increased over a period of 50 sec. These results indicate early retention of low vapor pressure fuel components in the intake manifold and exhaust system. Loss of higher molecular weight HC species does occur in the exhaust system as shown by experiments in which the exhaust system was preheated to 100° C. The atmospheric reactivity of the exhaust HC emissions for photochemical smog formation increases as the engine warms.
Technical Paper

Thermal Management Design and Simulation of Symmetric Air-Cooled System for Lithium Battery

2023-04-11
2023-01-0517
Good heat dissipation of Lithium battery can prevent the battery from shortening its life due to rapid aging or thermal runaway. In this paper, an air-cooled structure of 5 series and 3 parallel battery packs is designed, which combines the advantages of series and parallel air ducts and optimizes the heat dissipation effect and the space ratio of air ducts. First, the heat generation model of NCR18650PF lithium battery is established, and the heat generation rate and time under different discharge rates are calculated. Combined with the working conditions of the battery itself, the necessity of battery pack heat dissipation was found.
Technical Paper

The Research of the Heavy Truck’s Warming System

2017-10-08
2017-01-2221
It’s not easy to start the engine in winter, especially in frigid highlands, because the low temperature increases the fuel’s viscosity, decreasing the lubricating oil flow ability and the storage performance of battery. Current electrical heating method can improve the engine starting performance in low temperature condition, but this method adds an external power to the engine, leading to the engine cannot maintain an efficient energy utilization. A warming device using the solar energy is designed to conserve the energy during the daytime, and directly warm up the engine at the time when the engine turns off for a long time, especially during the night. A solar collector installed on the top of the vehicle is used to convert the solar energy to the thermal energy, which is then transferred to the heat accumulator that contain the phase-change medium which can increase the heat storage performance.
Technical Paper

The Future of the FREE-PISTON ENGINE in Commercial Vehicles

1958-01-01
580032
THIS paper describes the development and utilization of a new Ford free-piston power-plant, the model 519. Mr. Noren traces the development of the engine from the initial idea to the point where commercial utilization could be considered. Mr. Erwin describes one commercial use: in the Typhoon tractor. The ratio of size and weight to horsepower is favorable for farm tractors, being smaller and lighter than equivalent diesel engines. The performance of the tractor has been satisfactory thus far, operating smoothly and being practically vibration-free, with little noise. The advantages of the free-piston gasifier, as reported by the authors, are: flexibility, fuel economy, no need for auxiliary starting engine, economical manufacture of a wide range of engine sizes, adaptability to a wide range of fuels, and good torque characteristics.
Video

The Future (& Past) of Electrified Vehicles

2011-11-04
The presentation offers a brief history of the electric vehicle and parallels the realities of those early vehicles with the challenges and solutions of the electrified vehicles coming to market today. A technology evolution for every major component of these vehicles has now made this mode of transportation viable. The Focus Electric is Ford's first electric passenger car utilizing the advanced technology developments to meet the needs of electric car buyers in this emerging market. Presenter Charles Gray, Ford Motor Co.
Technical Paper

The Development and Application of Solid State Relays for Automotive Applications

1992-02-01
920540
The utilization of electro-mechanical relays in traditional automotive applications such as power door lock systems and vehicle lighting has been easily justified on the basis of performance, cost and reliability. However, with the advance of new vehicle systems, we find that new standards for the basic power switch must be established. When the control of anti-lock brake or suspension systems is to be considered, standards for performance and reliability must rise. This paper will examine a high current Solid State Relay (SSR) which has been developed for application within critical automotive systems. The design approach, technology utilized, and operating characteristics, as well as application justification will be discussed.
Technical Paper

The Automotive Primary Power Supply System

1974-02-01
741208
This paper describes the major electrical characteristics of the automotive power supply system. It is a compilation of existing data and new information that will be helpful to both the electrical component and electronic assembly designers. Previously available battery/alternator data is organized to be useful to the designer. New dynamic information on battery impedance is displayed along with “cogging” transients, regulation limits and load dump characteristics.
Book

The Automotive Industry and the Global Environment

1999-08-20
This book presents an analysis on the potential effects of globalization on the automotive industry and the environment. Energy challenges, market economy growth, and population dynamics are considered. The authors also present future scenarios for transportation technologies to meet the ever growing global demand for transportation of goods and services while minimizing energy and environmental impacts and maximizing cost, value and widespread acceptance.
Technical Paper

Temperature Control Characteristics of Automotive Power Battery Based on R-1233zd(E)’s Flowing Phase Change Heat Transfer

2018-04-03
2018-01-1191
Li-ion power battery is the core component of the electric vehicle power system, and the battery temperature will increase because of the electrochemical reaction of the Li-ion battery. The heat accumulates inside of the battery, which can degrade the working performance of the power battery and shorten the battery cycle life. At present, the wind cooling technology is relatively mature. However, it cannot achieve ideal heat dissipation effect under the working conditions of the high-power or high ambient temperature. In this research, the battery thermal management is carried out by the characteristics of the working fluid’s flowing phase change heat transfer. The phase change working fluid is R-1233zd(E) which is a kind of environmentally friendly liquid with nonconductive and nonflammable. It can achieve the purpose of controlling the battery’s temperature using the characteristics of isothermal heat absorption under different gas phase rate of phase change working fluid.
Technical Paper

Temperature Characteristics of Ternary-Material Lithium-Ion Battery for Vehicle Applications

2016-04-05
2016-01-1196
Traction batteries are operated in severe working conditions of wide temperature range as the vehicles run in different seasons and regions, which effects battery performance deeply. Investigation on the effect of temperature under such circumstances on battery performance is very significant to promote the application of traction battery. In this paper, some tests are conducted on a ternary-material lithium-ion battery at various temperatures. The cycling performance and some significant parameters are evaluated at the whole temperature range, especially at the extreme temperatures (below -10°C or above 45°C). The results show that the battery performance becomes poor obviously at low temperatures, which is reflected in the decreased terminal voltage and the faded discharge capacity, and at too high temperatures (above 45°C), power and capacity also decrease, which happens in the later period of discharge process.
Technical Paper

Switched-Capacitor Cell Balancing: A Fresh Perspective

2014-04-01
2014-01-1846
No two battery cells can be identical. Charging/discharging a battery pack without monitoring cell voltages or SoC (State-of-Charge) will cause cell voltages to deviate over time and the packs useable capacity to decrease quickly. To redistribute charge uniformly among cells, various cell balancing methods have been proposed in the literature. In this paper, a cell balancing method based on a single switched-capacitor is presented from a brand new perspective. Unlike the traditional balancing methods that rely on the voltage divergence criterion, this paper uses the SoC divergence criterion to shuttle charge from a highly charged cell to a poorly charged cell. Moreover, an equivalent resistance of the single-switched capacitor topology is derived in steady state. For fast cell balancing, design guidelines are provided for selecting a proper switching-time period and the capacitor parameters. Ultracapacitors are recommended to achieve this goal.
Technical Paper

Structural Design and Analysis of Battery Protection Device for Electric Truck

2021-04-06
2021-01-0795
The development of electrification is widely considered to be the key to the transportation industry. In recent years, the number of electric trucks on the road is increasing year by year, so the safety of electric trucks is of great importance. At present, the batteries of electric trucks are mostly arranged on the two sides of the trucks. The protective devices are only the guardrails fixed on the vehicle body, so the protective effect is poor. In view of this situation, this paper designed a battery protection device for electric truck. When the truck is hit in a side collision, the transverse guardrail first generates plastic deformation and absorbs kinetic energy. At this time, the collision force is transmitted to the energy-absorbing box along the moving direction of the side collision vehicle, and the energy-absorbing box is contracted to produce a buffer effect.
Technical Paper

Starter/Alternator Design for Optimized Hybrid Fuel Economy

2000-11-01
2000-01-C061
A Starter/Alternator (S/A) has been developed at Ford Research laboratories for hybrid electric vehicle applications. During development, the vehicle concept of operation and the system performance requirements were used to select the proper technology. The specification development, component selection and subsystem operation process is described. Subsystem performance and vehicle fuel economy are compared and evaluated using hybrid vehicle simulation analysis. These results can be used to identify potential subsystem modifications and alternative vehicle control strategies.
X