Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

TRACE CONTAMINANTS CONTROL ASSEMBLY DEVELOPMENT FOR THE JAPANESE CLOSED ECOLOGY EXPERIMENT FACILITIES

1994-06-01
941446
In the closed environments such as manned space station, it is necessary to remove contaminant gas to keep a suitable environment. Removal of gaseous contaminants generated from crew, animals, and plants is important function to keep the environment below the allowable level in the Closed Ecology Experiment Facilities (abbreviated as CEEF). CEEF consist of three modules for habitat, animal and plant, the supporting facilities for each module and a plant cultivation facility. CEEF are scheduled to be constructed from 1994 in Aomori Prefecture, northern part of Japan. For designing Trace Contaminant Control Assembly (TCCA) for CEEF, the following six (6) trace contaminants have been selected as major contaminant gas in CEEF; Ammonia (NH3) Methane (CH4) Ethylene (C2H4) Carbon Monoxide (CO) Nitrogen Dioxide (NO2) Sulfur Dioxide (SO2) Ethylene is well-known as an aggressive contaminant to plant growth and maturity.
Technical Paper

Refill Friction Spot Joining for Aerospace Application

2015-09-15
2015-01-2614
In the modern aircraft manufacturing, the cost reduction, the manufacturing time reduction, and the weight saving of aircraft are strongly demanded. The Refill Friction Spot Joining [1,2](FSJ, in other words FSSW, Friction Stir Spot Welding), which is one of innovative solid-state joining methodologies based on the Friction Stir Welding[3], is a promising technology that can replace rivets and fasteners. This technology is expected to offer cost reduction and weight saving for the aircraft manufacturing. In this study, to make stronger and reliable joints, the shoulder-plunging process of Refill FSJ was employed. The weldability of the Alodine or Chromic Acid Anodize coated materials along with a faying-surface sealant was investigated. The joint properties, such as tensile shear strengths and corrosion resistance, were evaluated.
Technical Paper

Development of a Drill Bit for CFRP/Aluminum-Alloy Stack: To Improve Flexibility, Economical Efficiency and Work Environment

2013-09-17
2013-01-2227
In the expansion of composite material application, it is one of the most important subjects in assembly of aircraft structure how drilling of composite/metal stack should be processed in an efficient way. This paper will show the result of development of a drill bit for CFRP/Aluminum-alloy stack by Kawasaki Heavy Industries (KHI) and Sumitomo Electric Hardmetal (SEH). In order to improve workability and economic performance, the drill bit which enables drilling CFRP/Al-alloy stack: at 1 shot; from both directions; without air blow and coolant (just usual vacuuming); was required. A best mix drill bit which has smooth multi angles edge and pointed finishing edge was produced as a result of some trials. Developed drill bit achieved required performance and contributed to large cost reduction, labor hour saving, production speed increase and work environment improvement.
Technical Paper

Development of Oxygen Generation System for a Long Manned Mission

1996-07-01
961370
An Oxygen Generation System (OGS) is an indispensable system for a long manned space mission. A Solid Polymer Water Electrolysis System (SPWES) has been developing by Kawasaki Heavy Industries, Ltd. for a future space mission since 1985. The authors have been studying the SPWES of a new solid polymer electrolyte with simplified cell structure. We presented the initial study results until 1993 at the former International Conference on Environmental Systems (ICES) shown in REFERENCE. The study was focused on the development of a SPWE cell at ambient pressure. This paper describes a follow-on study results related to development activity of a pressure cell module especially.
Technical Paper

Development of Oxygen Generation System for Spacecraft

1993-07-01
932270
Regenerative processes for the air revitalization system of spacecraft atmosphere are essential for realization of long-term manned space missions. These processes include Oxygen (O2) Generation System (OGS) through water electrolysis. The authors have been studying O2 generation system of a new Solid Polymer Water Electrolyte (SPWE) with simplified cell structure since 1985. The initial study results until 1991 were presented in the 21st and the former International Conference on Environmental Systems shown in REFERENCE. This paper describes a follow-on study activity to OGS which focuses on the improvement of cell endurance performance and resource.
Technical Paper

Application of Active Control Technologies and Structural Optimization for Supersonic Commercial Transport

1996-10-01
965560
A design procedure is presented which utilizes (1) the active control technologies such as Flutter Mode Control, Gust Load Alleviation and Maneuver Load Control to relax the strength and stiffness requirements on wing structure, and (2) structural optimization to derive the minimum weight composite wing structures satisfying the relaxed structural requirements. The design procedure is applied to the preliminary design study of a Supersonic Commercial Transport configuration with laminated composite wing structure. Four design configurations are compared. Maximum of about 30% structural weight reduction was achieved from the quasi-isotropic design. Also some insights on the characteristics of the Supersonic Commercial Transport configuration are discussed.
X