Refine Your Search

Topic

Search Results

Technical Paper

Verification and Validation of a Safety-Critical Steer-By-Wire System Using DO-178B

2006-04-03
2006-01-1447
The application of DO-178B for the verification and validation of the safety-critical aspects of a steer-by-wire sub-system of a vehicle by using a spiral development model is discussed. The project was performed within a capstone design course at Kettering University. Issues including lessons learned regarding requirements, specifications, testing, verification, and validation activities as required by DO-178B are summarized.
Technical Paper

Using Digital Image Correlation to Measure Dynamics of Rolling Tires

2018-04-03
2018-01-1217
Vehicles are in contact with the road surface through tires, and the interaction at the tire-road interface is usually the major source of vibrations that is experienced by the passengers in the vehicle. Thus, it is critical to measure the vibrational characteristics of the tires in order to improve the safety and comfort of the passengers and also to make the vehicle quieter. The measurement results can also be used to validate numerical models. In this paper, Digital Image Correlation (DIC) as a non-contact technique is used to measure the dynamics of a racing tire in static and rolling conditions. The Kettering University FSAE car is placed on the dynamometer machine for this experiment. A pair of high-speed cameras is used to capture high-resolution images of the tire in a close-up view. The images are processed using DIC to obtain strain and displacement of the sidewall of the tire during rolling. The experiment is performed for various testing speeds.
Technical Paper

Use of a Designed Experiment to Determine the Optimal Method to Join Injection-Molded Parts to Pultrusions

2006-10-31
2006-01-3575
A coupler has been developed to prevent windshield wiper systems from being damaged by excessive loads that can occur when the normal wiping pattern is restricted. The coupler is composed of a pultruded composite rod with injection-molded plastic spherical joints (a.k.a. sockets) attached at either end. The sockets are used to attach the coupler to the crank and rocker of the windshield wiper linkage. Because the loads exerted on a coupler vary in magnitude and direction during a wiping cycle, the joint between the sockets and the pultruded composite rod must be robust. The paradigm for attaching sockets to steel couplers (i.e. over-molding the sockets around holes stamped into the ends of traditional steel couplers) was applied to the pultruded rods, tested, and found to produce inadequate joint strength. This paper details the methodology that was employed to produce and optimize an acceptable means to attach the injection-molded sockets to the pultruded rods.
Technical Paper

Traction and Clutch Effects on the Natural Frequency and Vibration Stability of Limited Slip Differential Axles

2007-05-15
2007-01-2295
The torsional natural frequencies of axles equipped with limited slip differential clutches depend on whether or not the tires and clutches are slipping since the effective inertia at each end of the axle is different for slipping and non-slipping conditions. Limited slip axle vibrations are typically analyzed for one tire slipping and the other not since that is the case for which the limited slip clutches are used. Vibrations often arise, however, during normal turning when both drive tires have good traction.
Technical Paper

State Space Formulation by Bond Graph Models for Vehicle System Dynamics

2008-04-14
2008-01-0430
Modeling and simulation of dynamic systems is not always a simple task. In this paper, the mathematical model of a 4 Degree Of Freedom (DOF) ride model is presented using a bond-graph technique with state energy variables. We believe that for the physical model as described in this research, the use of a bond-graph approach is the only feasible solution. Any attempt to use classical methods such as Lagrange equations or Newton's second law, will create tremendous difficulties in the transformation of a set of second order linear differential equations to a set of first order differential equations without violating the existence and the uniqueness of the solution of the differential equations, the only approach is the elimination of the damping of the tires, which makes the model unrealistic. The bond-graph model is transformed to a mathematical model. Matlab is used for writing a computer script that solves the engineering problem.
Technical Paper

Simulation Study of Vehicle Handling Characteristics on Snowy and Icy Terrain

2023-04-11
2023-01-0902
Safety is considered one of the most important parameters when designing a ground vehicle. The adverse effect of weather on a vehicle can lead to a surge in safety issues and accidents. Several safety assistance systems are available in modern vehicles, which are designed to lessen the negative effects of weather hazards. Although these safety systems can intervene during crucial conditions to avoid accidents, driving a vehicle on snowy or icy terrain can still be a challenging task. Road conditions with the least tire-road friction often results in poor vehicle handling, and without any kind of safety system it can lead to mishaps. With the use of Adams Car software and vehicle dynamics modeling, a realistic relationship between the vehicle and road surface may be established. The simulation can be used to have a better understanding of vehicle handling in snowy and icy conditions, tire-ice interaction, and tire modeling.
Technical Paper

Physical Validation Testing of a Smart Tire Prototype for Estimation of Tire Forces

2018-04-03
2018-01-1117
The safety of ground vehicles is a matter of critical importance. Vehicle safety is enhanced with the use of control systems that mitigate the effect of unachievable demands from the driver, especially demands for tire forces that cannot be developed. This paper presents the results of a smart tire prototyping and validation study, which is an investigation of a smart tire system that can be used as part of these mitigation efforts. The smart tire can monitor itself using in-tire sensors and provide information regarding its own tire forces and moments, which can be transmitted to a vehicle control system for improved safety. The smart tire is designed to estimate the three orthogonal tire forces and the tire aligning moment at least once per wheel revolution during all modes of vehicle operation, with high accuracy. The prototype includes two in-tire piezoelectric deformation sensors and a rotary encoder.
Technical Paper

Investigation of Airflow Induced Whistle Noise by HVAC Control Doors Utilizing a ‘V-Shape’ Rubber Seal

2011-05-17
2011-01-1615
Doors inside an automotive HVAC module are essential components to ensure occupant comfort by controlling the cabin temperature and directing the air flow. For temperature control, the function of a door is not only to close/block the airflow path via the door seal that presses against HVAC wall, but also control the amount of hot and cold airflow to maintain cabin temperature. To meet the stringent OEM sealing requirement while maintaining a cost-effective product, a “V-Shape” soft rubber seal is commonly used. However, in certain conditions when the door is in the position other than closed which creates a small gap, this “V-Shape” seal is susceptible to the generation of objectionable whistle noise for the vehicle passengers. This nuisance can easily reduce end-customer satisfaction to the overall HVAC performance.
Technical Paper

Investigation and Development of a Slip Model for a Basic Rigid Ring Ride Model

2018-04-03
2018-01-1116
With the recent advances in rapid modeling and rapid prototyping, accurate simulation models for tires are very desirable. Selection of a tire slip model depends on the required frequency range and nonlinearity associated with the dynamics of the vehicle. This paper presents a brief overview of three major slip concepts including “Stationary slip”, “Physical transient slip”, and “Pragmatic transient slip”; tire models use these slip concepts to incorporate tire slip behavior. The review illustrates that there can be no single accurate slip model which could be ideally used for all modes of vehicle dynamics simulations. For this study, a rigid ring based semi-analytical tire model for intermediate frequency (up to 100 Hz) is used.
Technical Paper

Feasibility Study Using FE Model for Tire Load Estimation

2019-04-02
2019-01-0175
For virtual simulation of the vehicle attributes such as handling, durability, and ride, an accurate representation of pneumatic tire behavior is very crucial. With the advancement in autonomous vehicles as well as the development of Driver Assisted Systems (DAS), the need for an Intelligent Tire Model is even more on the increase. Integrating sensors into the inner liner of a tire has proved to be the most promising way in extracting the real-time tire patch-road interface data which serves as a crucial zone in developing control algorithms for an automobile. The model under development in Kettering University (KU-iTire), can predict the subsequent braking-traction requirement to avoid slip condition at the interface by implementing new algorithms to process the acceleration signals perceived from an accelerometer installed in the inner liner on the tire.
Technical Paper

External Flow Analysis of a Truck for Drag Reduction

2000-12-04
2000-01-3500
Aerodynamics of trucks and other high sided vehicles is of significant interest in reducing road side accidents due to wind loading and in improving fuel economy. Recognizing the limitations of conventional wind tunnel testing, considerable efforts have been invested in the last decade to study vehicle aerodynamics computationally. In this paper, a three-dimensional near field flow analysis has been performed for axial and cross wind loading to understand the airflow characteristics surrounding a truck-like bluff body. Results provide associated drag for the truck geometry including the exterior rearview mirror. Modifying truck geometry can reduce drag, improving fuel economy.
Technical Paper

External Flow Analysis Over a Car to Study The Influence of Different Body Profiles Using CFD

2001-10-16
2001-01-3085
A vehicle’s performance and fuel economy plays an important role in obtaining a larger market share in the segment. This can be best achieved by optimizing the aerodynamics of the vehicle. Aerodynamics can be improved by altering the bodylines on a vehicle. Its drag coefficient can be maintained at a minimum value by properly designing various component profiles. The stability of a vehicle and Passenger comfort are affected by wind noise that is related to the aerodynamics of a vehicle. To study the effects of the above-mentioned parameters, the vehicle is tested inside a wind tunnel. In this paper, the authors study the body profile for different vehicles and analyze them using Computational Fluid Dynamics software - FLUENT. To study the influence of different body profiles on drag coefficient, 3 different vehicle segments are considered.
Technical Paper

Experimentation for Design Improvements for Coil Spring in the Independent Suspension

2020-04-14
2020-01-0503
The objective of this project is to analyze potential design changes that can improve the performance of helical spring in an independent suspension. The performance of the helical spring was based upon the result measure of maximum value of stress acting on it and the amount displacement caused when the spring undergoes loading. The design changes in the spring were limited to coil cross section, spring diameter (constant & variable), pitch and length of the spring. The project was divided into Stage I & Stage II. For Stage I, using all the possible combinations of these design parameters, linear stress analysis was performed on different spring designs and their Stress and displacement results were evaluated. Based on the results, the spring designs were classified as over designed or under designed springs.
Technical Paper

Effect of Chassis Design Factors (CDF) on the Ride Quality Using a Seven Degree of Freedom Vehicle Model

2004-03-08
2004-01-1555
The kinematics and kinetics of a seven degree of freedom vehicle ride model with independent front and rear suspension are developed. Lagrange's equation is used to obtain the mathematical model of the vehicle. The equations of motion are transformed to state space equations in Linear Time Invariant (LTI) form. The effect of Chassis Design Factors (CDF) such as stabilizer bars, stiffness', Dynamic Index in Pitch (DIP) and mass ratio on the vehicle ride quality are investigated. The ride quality of the 3 dimensional vehicle that includes bounce, pitch, roll and unsprung masses motion is demonstrated in time domain response. The vehicle is considered as a Multi-Input-Multi-Output System (MIMO) subjected to deterministic ground inputs. Outputs of interest for the ride quality investigation are vertical and angular displacement and vertical accelerations. Numerical computer simulation analysis is performed using MATLAB® software.
Technical Paper

Design, Modeling, and Analysis of Heave and Roll Decoupled Suspension Geometry for a Formula Student Prototype

2024-04-09
2024-01-2077
This work aims to present the application of mode coupling to a Formula Student racing vehicle and propose a solution. The major modes of a vehicle are heave, pitch, roll, and warp. All these modes are highly coupled – which means changing suspension rates or geometry will affect all of them – while alleviating some and making others worse characteristics. Decoupling these modes, or at least some of them, would provide more control over suspension setup and more refined race car dynamics for a given layout of the racetrack. This could improve mechanical grip and yield significant performance improvements in closed-circuit racing. If exploited well, this approach could also assist in the operation of the vehicle at an optimal kinematic state of the suspension systems, to gain the best wheel orientations and maximize grip from the tires under the high lateral accelerations and varied excitations seen on a typical road course.
Technical Paper

Design and Analysis of Kettering University’s New Proving Ground, the GM Mobility Research Center

2020-04-14
2020-01-0213
Rapid changes in the automotive industry, including the growth of advanced vehicle controls and autonomy, are driving the need for more dedicated proving ground spaces where these systems can be developed safely. To address this need, Kettering University has created the GM Mobility Research Center, a 21-acre proving ground located in Flint, Michigan at the former “Chevy in the Hole” factory location. Construction of a proving ground on this site represents a beneficial redevelopment of an industrial brownfield, as well as a significant expansion of the test facilities available at the campus of Kettering University. Test facilities on the site include a road course and a test pad, along with a building that has garage space, a conference room, and an indoor observation platform. All of these facilities are available to the students and faculty of Kettering University, along with their industrial partners, for the purpose of engaging in advanced transportation research and education.
Technical Paper

Cradle to Grave Comparison on Emission Produced by EV and ICE Powertrains

2024-04-09
2024-01-2402
Since the popularization of the Electric Vehicle (EV) there has been a large movement of consumers, governments, and the automotive industry due to its environmentally friendly characteristics. Unlike an IC engine, the batteries use multitudes of rare earth minerals and complex manufacturing processes which in some cases have been shown to produce as many emissions as an ICE vehicle over its entire lifespan. Another unnoticed important environmental concern has been the final recycling and disposal of the power train after its use. Unlike an ICE engine, which can be melted down or re-used, recycling batteries are much more difficult. In most cases the recycling process and the byproducts produced can be very harmful to the environment. This paper aims to be a complete cradle-to-grave analysis of all emissions produced in the life of an EV battery.
Technical Paper

Cervical Range of Motion Data in Children

2006-04-03
2006-01-1140
The “Range-of Motion of the Cervical Spine of Children” study is a collaboration between Kettering University and McLaren Regional Medical Center in Flint, Michigan to quantify and establish benchmarks of “normal” range of motion (ROM) in children. The results will be analyzed to determine mean and standard deviation of degrees of rotation and used to improve the occupant protection in motor vehicles, sports equipment and benefits of physical therapy. The data will be invaluable in the development of computational models to analyze processes involving children in motion.
Technical Paper

Blind-Spot Detection and Avoidance Utilizing In-Vehicle Haptic Feedback Force Feedback

2011-04-12
2011-01-0556
Steer-by-wire is a system where there are no mechanical connections between the steering wheel and the tires. With the inception of electric and hybrid cars, steer-by-wire is becoming more common. A steer-by-wire car opens many opportunities for additional feedback on the steering wheel. Providing haptic feedback through the steering wheel will add additional depth and capabilities to make the driving experience safer. In this paper we investigated the effects of force feedback on the steering wheel in order to detect and/or avoid blind spot collisions. Two types of force feedback are examined using a driving simulator: a rumble and a counter steering force. A rumble on the steering wheel can avoid blind-spot accidents by providing feedback to drivers about vehicles in their blind spots. Providing counter steering force feedback can help in the reduction in blind-spot accidents. The results show that adding counter steering force feedback did reduce blind-spot related collisions.
Technical Paper

Automated 3D Printer Bed Clearing Mechanism

2020-04-14
2020-01-1301
The objective of this work was to design an automated bed clearing mechanism for the Anet brand A8 3D printer, which uses Fused Deposition Modeling (FDM) process. This work has been carried out as a capstone course. Many OEMs are focusing on using functional 3D printed parts to replace metal parts that otherwise require complex assemblies or to reduce weight. The concept behind the work presented in this paper was to allow every user to be able to print multiple parts without human interaction. This saves time to load and unload one part at a time. The idea was to develop a universal bed clearing mechanism that can be used for most brands of 3D printers. Upon researching into the many different styles and designs of printers, it became clear that the designs are different and complex to create a universal product. It was decided to aim for the most common style of 3D printers for which easy modeling and testing should be possible.
X