Refine Your Search

Topic

Author

Search Results

Technical Paper

Towards A Definition of A Test Methodology for Rollover Resistance and Rollover Performance

2004-03-08
2004-01-0736
A variety of test methodologies currently exist to assess the propensity of a vehicle to roll laterally, the vehicle performance during a rollover event, and the associated risk of injury to the occupant. There are indications as to which tests are appropriate when attempting to replicate rollover events observed in the field. Due to the complexity of a rollover, test repeatability is a concern as well as cost, and field relevance. Since revisions to governmental rollover regulations are currently being considered, an assessment of currently available rollover test methodologies would provide a context to compare the different experimental designs. Additionally, the design of injury prevention strategies such as side air curtains, 4-point belts, etc. will also require the establishment of repeatable, robust, and economical test methods.
Technical Paper

The Effects of Retained Fluid and Humidity on the Evacuation of Critical Vehicle Systems

1999-05-10
1999-01-1630
In automotive assembly facilities worldwide, many critical vehicle systems such as brakes, power steering, radiator, and air conditioning require the appropriate fluid to function. In order to insure that these critical vehicle systems receive the correct amount of properly treated fluid, automotive manufacturers employ a method called Evacuation and Fill. Due to their closed-loop design, many critical vehicle systems must be first exposed to vacuum prior to being flooded with fluid. Only after the evacuation and fill process is complete will the critical vehicle system be able to perform as specified. It has long been thought, but never proven, that humidity and entrenched fluid were major hindrances to the Evacuation and Fill process. Consequently, Ford Motor Company Advanced Manufacturing Technology Development, Sandalwood Enterprises, Kettering University, and Dominion Tool & Die conducted a detailed project on this subject.
Technical Paper

The Effect of a Multiple Spark Discharge Ignition System and Spark Plug Electrode Configuration on Cold Starting of a Dedicated E85 Fueled Vehicle

1999-08-02
1999-01-2664
This paper describes the experiments conducted to determine the effect of high energy multiple spark discharge (MSD) ignition systems and spark plug electrode design, on the cold start performance of a vehicle which was converted for dedicated operation on E85 (a blend of 85% ethanol and 15% gasoline) fuel. Tests were conducted using three different ignition configurations; original equipment manufacturer (OEM) ignition and spark plugs, high energy multiple spark discharge (MSD) ignition with OEM, J-type spark plugs, and high energy MSD ignition with surface gap electrode spark plugs. The high energy MSD ignition with OEM spark plugs showed a significant improvement in cold start performance over the OEM ignition. The addition of the surface gap spark plugs caused a decrease in cold start performance. Despite this, the surface gap spark plugs produced higher ending coolant temperature than the other configurations.
Technical Paper

The Effect of Multiple Spark Discharge on the Cold-Startability of an E85 Fueled Vehicle

1999-03-01
1999-01-0609
This paper describes experiments conducted to determine the effect of multiple spark discharge ignition systems and spark plug electrode design on cold start performance of a dedicated E85 fueled vehicle. Tests were conducted using three different ignition configurations: OEM ignition and spark plugs, multiple spark discharge ignition with OEM spark plugs, and multiple spark discharge ignition with large gap circular electrode spark plugs. The multiple spark discharge ignition with OEM spark plugs showed a significant improvement in cold start performance over the OEM ignition, but the addition of the circular electrode spark plugs caused a decrease in cold start performance. The circular ground spark plugs did produce a higher ending coolant temperature than either of the other configurations.
Technical Paper

Structural Analysis and Design Modification of Seat Rail Structures in Various Operating Conditions

2020-04-14
2020-01-1101
This paper is based on, and in continuation of the work previously published in ASEE NCS Conference held in Grand Rapids, MI [1]. Automotive seating rail structures are one of the key components in the automotive industry because they carry the entire weight of passenger and they hold the structure for seating foams and other assembled key components such as side airbag and seatbelt systems. The entire seating is supported firmly and attached to the bottom bodywork of the vehicle through the linkage assembly called the seat rails. Seat rails are adjustable in their longitudinal motion which plays an important role in giving the passengers enough leg room to make them feel comfortable. Therefore, seat rails under the various operating conditions, should be able to withstand the weight of the passenger along with the other assembled parts as mentioned above. Also, functional requirements such as crash safety is very important to avoid or to minimize injuries to the occupants.
Technical Paper

Source Noise Isolation during Electric Vehicle Pass-By Noise Testing Using Multiple Coherence

2020-04-14
2020-01-1268
Due to the nearly silent operation of an electric motor, it is difficult for pedestrians to detect an approaching electric vehicle. To address this safety concern, the National Highway Traffic Safety Administration issued the Federal Motor Vehicle Safety Standard (FMVSS) No. 141, “Minimum Sound Requirements for Hybrid and Electric Vehicles”. This FMVSS 141 standard requires the measurement of electric vehicle noise according to certain test protocols; however, performing these tests can be difficult since inconsistent results can occur in the presence of transient background noise. Methods to isolate background noise during static sound measurements have already been established, though these methods are not directly applicable to a pass-by noise test where neither the background noise nor the vehicle itself as it travels past the microphone produce stationary sound signals.
Technical Paper

Simulation Study of Vehicle Handling Characteristics on Snowy and Icy Terrain

2023-04-11
2023-01-0902
Safety is considered one of the most important parameters when designing a ground vehicle. The adverse effect of weather on a vehicle can lead to a surge in safety issues and accidents. Several safety assistance systems are available in modern vehicles, which are designed to lessen the negative effects of weather hazards. Although these safety systems can intervene during crucial conditions to avoid accidents, driving a vehicle on snowy or icy terrain can still be a challenging task. Road conditions with the least tire-road friction often results in poor vehicle handling, and without any kind of safety system it can lead to mishaps. With the use of Adams Car software and vehicle dynamics modeling, a realistic relationship between the vehicle and road surface may be established. The simulation can be used to have a better understanding of vehicle handling in snowy and icy conditions, tire-ice interaction, and tire modeling.
Technical Paper

Sensor-Fused Low Light Pedestrian Detection System with Transfer Learning

2024-04-09
2024-01-2043
Objection detection using a camera sensor is essential for developing Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD) vehicles. Due to the recent advancement in deep Convolution Neural Networks (CNNs), object detection based on CNNs has achieved state-of-the-art performance during daytime. However, using an RGB camera alone in object detection under poor lighting conditions, such as sun flare, snow, and foggy nights, causes the system's performance to drop and increases the likelihood of a crash. In addition, the object detection system based on an RGB camera performs poorly during nighttime because the camera sensors are susceptible to lighting conditions. This paper explores different pedestrian detection systems at low-lighting conditions and proposes a sensor-fused pedestrian detection system under low-lighting conditions, including nighttime. The proposed system fuses RGB and infrared (IR) thermal camera information.
Technical Paper

Power Systems Infrastructure of Hybrid Electric Fuel Cell Competition Go Kart

2017-10-08
2017-01-2452
This paper documents the electrical infrastructure design of a Hybrid Go Kart competition vehicle which includes a dual Fuel Cell power system, Ultra Capacitors for energy storage, and a dual AC induction motor capable of independent drive. The Kart was built primarily to compete in the 2009 Formula Zero international event. This paper emphasized the vehicle model and control strategy as a result of three (3) graduate student research projects. The vehicle was fabricated and tested but did not participate in the race competition since the race organization folded. The vehicle model was developed in Simulink to determine whether the fuel cell and ultra-capacitor combination will be sufficient for peak transient power requirement of 14 kW. The vehicle’s functional description and performance specifications are documented including the integration of the fuel cell power modules, energy storage system, power converters, and AC motor and motor controllers.
Technical Paper

Numerical Simulations in a High Swirl Methanol-Fueled Directly-Injected Engine

2003-10-27
2003-01-3132
Three-dimensional transient simulations using KIVA-3V were conducted on a 4-stroke high-compression ratio, methanol-fueled, direct-injection (DI) engine. The engine had two intake ports that were designed to impart a swirling motion to the intake air. In some cases, the intake system was modified, by decreasing the ports diameter in order to increase the swirl ratio. To investigate the effect of adding shrouds to the intake valves on swirl, two sets of intake valves were considered; the first set consisted of conventional valves, and the second set of valves had back shrouds to restrict airflow from the backside of the valves. In addition, the effect of using one or two intake ports on swirl generation was determined by blocking one of the ports.
Technical Paper

Numerical Evaluation of A Methanol Fueled Directly-Injected Engine

2002-10-21
2002-01-2702
A numerical study on the combustion of Methanol in a directly injected (DI) engine was conducted. The study considers the effect of the bowl-in-piston (BIP) geometry, swirl ratio (SR), and relative equivalence ratio (λ), on flame propagation and burn rate of Methanol in a 4-stroke engine. Ignition-assist in this engine was accomplished by a spark plug system. Numerical simulations of two different BIP geometries were considered. Combustion characteristics of Methanol under swirl and no-swirl conditions were investigated. In addition, the amount of injected fuel was varied in order to determine the effect of stoichiometry on combustion. Only the compression and expansion strokes were simulated. The results show that fuel-air mixing, combustion, and flame propagation was significantly enhanced when swirl was turned on. This resulted in a higher peak pressure in the cylinder, and more heat loss through the cylinder walls.
Journal Article

Noise, Vibration, and Harshness Considerations for Autonomous Vehicle Perception Equipment

2020-04-14
2020-01-0482
Automakers looking to remake their traditional vehicle line-up into autonomous vehicles, Noise, Vibration, and Harshness (NVH) considerations for autonomous vehicles are soon to follow. While traditional NVH considerations still must be applied to carry-over systems, additional components are required for an autonomous vehicle to operate. These additional components needed for autonomy also require NVH analysis and optimization. Autonomous vehicles rely on a suite of sensors, including Light Detection and Ranging (LiDAR) and cameras placed at optimal points on the vehicle for maximum coverage and utilization. In this study, the NVH considerations of autonomous vehicles are examined, focusing on the additional perception equipment installed in autonomous vehicles.
Technical Paper

Multidimensional Predictions of Methanol Combustion in a High-Compression DI Engine

2003-10-27
2003-01-3133
Numerical simulations of lean Methanol combustion in a four-stroke internal combustion engine were conducted on a high-compression ratio engine. The engine had a removable integral injector ignition source insert that allowed changing the head dome volume, and the location of the spark plug relative to the fuel injector. It had two intake valves and two exhaust ports. The intake ports were designed so the airflow into the engine exhibited no tumble or swirl motions in the cylinder. Three different engine configurations were considered: One configuration had a flat head and piston, and the other two had a hemispherical combustion chamber in the cylinder head and a hemispherical bowl in the piston, with different volumes. The relative equivalence ratio (Lambda), injection timing and ignition timing were varied to determine the operating range for each configuration. Lambda (λ) values from 1.5 to 2.75 were considered.
Technical Paper

Modeling Diesel Combustion in a Pre-chamber and Main Chamber

2004-10-25
2004-01-2968
Three-dimensional numerical simulations of a diesel-fueled engine with a pre-chamber located in the cylinder head and a bowl in the piston were performed. The study considers the effect of diesel combustion in the pre-chamber on turbulence generation and hence fuel-air mixing and combustion in the piston-bowl. Diesel fuel was injected directly into the pre-chamber and the piston bowl at different times. In order to better determine the effect of pre-chamber combustion on the main chamber combustion, various pre-chamber injection timings were considered. The results show that pre-chamber combustion caused the average cylinder pressure to increase by up to 20% in some cases.
Technical Paper

Kettering University's Design of an Automotive Based Four-Stroke Powered Clean Snowmobile

2002-10-21
2002-01-2757
Kettering University's entry in the 2002 Clean Snowmobile Challenge involves the installation of a fuel injected four-stroke engine into a conventional snowmobile chassis. Exhaust emissions are minimized through the use of a catalytic converter and an electronically controlled closed-loop fuel injection system, which also maximizes fuel economy. Noise emissions are minimized by the use of a specifically designed engine silencing system and several chassis treatments. Emissions tests run during the SAE collegiate design event revealed that a snowmobile designed by Kettering University produces lower unburned hydrocarbon (1.5 to 7 times less), carbon monoxide (1.5 to 7 times less), and oxides of nitrogen (and 5 to 23 times less) levels than the average automobile driven in Yellowstone National Park. The Kettering University entry also boasted acceleration performance better than the late-model 500 cc two-stroke snowmobile used as a control snowmobile in the Clean Snowmobile testing.
Technical Paper

Kettering University's 2003 Design for the Clean Snowmobile Challenge

2003-09-15
2003-32-0076
Kettering University's entry in the 2003 Clean Snowmobile Challenge entails the installation of a fuel injected four-stroke engine into a conventional snowmobile chassis. Exhaust emissions are minimized through the use of a catalytic converter and an electronically controlled closed-loop fuel injection system, which also maximizes fuel economy. Noise emissions are minimized by the use of a specifically designed engine silencing system and several chassis treatments. Emissions tests run during the SAE collegiate design event revealed that a snowmobile designed by Kettering University produces lower unburned hydrocarbon (1.5 to 7 times less), carbon monoxide (1.5 to 7 times less), and oxides of nitrogen (and 5 to 23 times less) levels than the average automobile driven in Yellowstone National Park. The Kettering University entry also boasted acceleration performance better than the late-model 500 cc two-stroke snowmobile used as a control snowmobile in the Clean Snowmobile testing.
Technical Paper

Investigation of Joint Torque Characteristics for a Mechanical Counter - Pressure Spacesuit

2009-07-12
2009-01-2536
Mechanical counter-pressure (MCP) spacesuit designs have been a promising, but elusive alternative to historical and current gas pressurized spacesuit technology since the Apollo program. One of the important potential advantages of the approach is enhanced mobility as a result of reduced bulk and joint torques, but the literature provides essentially no quantitative joint torque data or quantitative analytical support. Decisions on the value of investment in MCP technology and on the direction of technology development are hampered by this lack of information since the perceived mobility advantages are an important factor. An experimental study of a simple mechanical counter-pressure suit (elbow) hinge joint has been performed to provide some test data and analytical background on this issue to support future evaluation of the technology potential and future development efforts.
Technical Paper

Injury Sources for Second Row Occupants in Frontal Crashes Considering Age and Restraint Condition Influence

2015-04-14
2015-01-1451
The current study examined field data in order to document injury rates, injured body regions, and injury sources for persons seated in the second row of passenger vehicles. It was also intended to identify whether these varied with respect to age and restraint use in vehicles manufactured in recent years. Data from the 2007-2012 National Automotive Sampling System (NASS/CDS) was used to describe occupants seated in the second row of vehicles in frontal crashes. Injury plots, comparison of means and logistic regression analysis were used to seek factors associated with increased risk of injury. Restraint use reduced the risk of AIS ≥ 2 injury from approximately 1.8% to 5.8% overall. Seventy nine percent of the occupants in the weighted data set used either a lap and shoulder belt or child restraint system. The most frequently indicated injury source for persons with a MAIS ≥ 2 was “seat, back support”, across restraint conditions and for all but the youngest occupants.
Technical Paper

Implantation Design Guidelines for Instrumenting the Cadaveric Lower Extremity to Transduce Femur Loads and Tibial Forces and Moments

2003-03-03
2003-01-0162
Numerous studies have documented the implantation of a 6-axis load cell in series with the tibial shaft and a limited number of studies have instrumented the femur for uniaxial load transduction. We are unaware of a single study seeking to instrument both anatomical segments. In addition, while the instrumentation processes have been described in textural and graphical detail, the dimensions and material choices for preparation jigs, potting cups, etc. are typically not given. In the current study, we have reviewed the available literature and have developed a modified preparation and implantation methodology. We also include complete designs appropriate for a reproduction of our process or modification of the methodology by the reader. The robustness of our technique was verified in a companion study in which whole, unembalmed cadavers were subjected to a HYGE frontal sled test without compromise of the instrumentation.
Technical Paper

High Speed Measurement of Contact Pressure and Area during Knee-to-Instrument Panel Impact Events Suffered from Frontal Crashes

2001-03-05
2001-01-0174
Numerous human cadaver impact studies have shown that acute injury to the knee, femoral shaft, and hip may be significantly reduced by increasing the contact area over the anterior surface of the knee. Such impact events are common in frontal crashes when the knee strikes the instrument panel (IP). The cadaveric studies show that the injury threshold of the knee-thigh-hip complex increases as the contact area over the knee is likewise increased. Unfortunately, no prior methodology exists to record the spatial and temporal contact pressure distributions in dummy (or cadaver) experiments. Previous efforts have been limited to the use of pressure sensitive film, which only yields a cumulative record of contact. These studies assumed that the cumulative pressure sensitive film image correlated with the peak load, although this has never been validated.
X