Refine Your Search

Search Results

Viewing 1 of 1
Technical Paper

The Effect of Methane Addition on the Low-Temperature Oxidation Preparation and the Thermal Ignition Preparation of Dimethyl Ether Under Representative Engine In-Cylinder Thermal Conditions

2023-09-29
2023-32-0150
Dimethyl ether (DME) is a highly reactive diesel substitute that can be used as a pilot fuel to ignite low- reactivity methane (CH4) in heavy-duty engines. To optimize the efficiency and emissions of CH4/DME dual-fuel engines, it is crucial to study the fundamental combustion characteristics of DME mixed with methane. This study focuses on the influence of CH4 addition on the low-temperature oxidation (LTO) preparation stage and the thermal ignition (TI) preparation stage of DME in the two-stage ignition process, as these two stages respectively control the ignition delay of the first and second stages. The comparison is made between pure DME and a 50% CH4 and 50% DME blended fuel, operating under thermodynamic conditions representing the engine in- cylinder environment at 30 atm pressure, 650K temperature, and a stoichiometric equivalence ratio. The results show that the addition of methane hardly affects the control mechanism of the two-stage ignition of DME.
X