Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Speed Analysis of Yawing Passenger Vehicles Following a Tire Tread Detachment

2019-04-02
2019-01-0418
This paper presents yaw testing of vehicles with tread removed from tires at various locations. A 2004 Chevrolet Malibu and a 2003 Ford Expedition were included in the test series. The vehicles were accelerated up to speed and a large steering input was made to induce yaw. Speed at the beginning of the tire mark evidence varied between 33 mph and 73 mph. Both vehicles were instrumented to record over the ground speed, steering angle, yaw angle and in some tests, wheel speeds. The tire marks on the roadway were surveyed and photographed. The Critical Speed Formula has long been used by accident reconstructionists for estimating a vehicle’s speed at the beginning of yaw tire marks. The method has been validated by previous researchers to calculate the speed of a vehicle with four intact tires. This research extends the Critical Speed Formula to include yawing vehicles following a tread detachment event.
Technical Paper

Post-Impact Dynamics for Vehicles with a High Yaw Velocity

2016-04-05
2016-01-1470
Calculating the speed of a yawing and braked vehicle often requires an estimate of the vehicle deceleration. During a steering induced yaw, the rotational velocity of the vehicle will typically be small enough that it will not make up a significant portion of the vehicle’s energy. However, when a yaw is impact induced and the resulting yaw velocity is high, the rotational component of the vehicle’s kinetic energy can be significant relative to the translational component. In such cases, the rotational velocity can have a meaningful effect on the deceleration, since there is additional energy that needs dissipated and since the vehicle tires can travel a substantially different distance than the vehicle center of gravity. In addition to the effects of rotational energy on the deceleration, high yaw velocities can also cause steering angles to develop at the front tires. This too can affect the deceleration since it will influence the slip angles at the front tires.
Technical Paper

Photogrammetric Measurement Error Associated with Lens Distortion

2011-04-12
2011-01-0286
All camera lenses contain optical aberrations as a result of the design and manufacturing processes. Lens aberrations cause distortion of the resulting image captured on film or a sensor. This distortion is inherent in all lenses because of the shape required to project the image onto film or a sensor, the materials that make up the lens, and the configuration of lenses to achieve varying focal lengths and other photographic effects. The distortion associated with lenses can cause errors to be introduced when photogrammetric techniques are used to analyze photographs of accidents scenes to determine position, scale, length and other characteristics of evidence in a photograph. This paper evaluates how lens distortion can affect images, and how photogrammetrically measuring a distorted image can result in measurement errors.
Technical Paper

Lateral and Tangential Accelerations of Left Turning Vehicles from Naturalistic Observations

2019-04-02
2019-01-0421
When reconstructing collisions involving left turning vehicles at intersections, accident reconstructionists are often required to determine the relative timing and spacing between two vehicles involved in such a collision. This time-space analysis frequently involves determining or prescribing a path and acceleration profile for the left turning vehicle. Although numerous studies have examined the straight-line acceleration of vehicles, only two studies have presented the tangential and lateral acceleration of left turning vehicles. This paper expands on the results of those limited studies and presents a methodology to automatically detect and track vehicles in a video file. The authors made observations of left turning vehicles at three intersections. Each intersection incorporated permissive green turn phases for left turning vehicles.
Technical Paper

Comparison of Calculated Speeds for a Yawing and Braking Vehicle to Full-Scale Vehicle Tests

2012-04-16
2012-01-0620
Accurately reconstructing the speed of a yawing and braking vehicle requires an estimate of the varying rates at which the vehicle decelerated. This paper explores the accuracy of several approaches to making this calculation. The first approach uses the Bakker-Nyborg-Pacejka (BNP) tire force model in conjunction with the Nicolas-Comstock-Brach (NCB) combined tire force equations to calculate a yawing and braking vehicle's deceleration rate. Application of this model in a crash reconstruction context will typically require the use of generic tire model parameters, and so, the research in this paper explored the accuracy of using such generic parameters. The paper then examines a simpler equation for calculating a yawing and braking vehicle's deceleration rate which was proposed by Martinez and Schlueter in a 1996 paper. It is demonstrated that this equation exhibits physically unrealistic behavior that precludes it from being used to accurately determine a vehicle's deceleration rate.
Technical Paper

Braking and Swerving Capabilities of Three-Wheeled Motorcycles

2019-04-02
2019-01-0413
This paper reports testing and analysis of the braking and swerving capabilities of on-road, three-wheeled motorcycles. A three-wheeled vehicle has handling and stability characteristics that differ both from two-wheeled motorcycles and from four-wheeled vehicles. The data reported in this paper will enable accident reconstructionists to consider these different characteristics when analyzing a three-wheeled motorcycle operator’s ability to brake or swerve to avoid a crash. The testing in this study utilized two riders operating two Harley-Davidson Tri-Glide motorcycles with two wheels in the rear and one in the front. Testing was also conducted with ballast to explore the influence of passenger or cargo weight. Numerous studies have documented the braking capabilities of two-wheeled motorcycles with riders of varying skill levels and with a range of braking systems.
Technical Paper

An Evaluation of Two Methodologies for Lens Distortion Removal when EXIF Data is Unavailable

2017-03-28
2017-01-1422
Photogrammetry and the accuracy of a photogrammetric solution is reliant on the quality of photographs and the accuracy of pixel location within the photographs. A photograph with lens distortion can create inaccuracies within a photogrammetric solution. Due to the curved nature of a camera’s lens(s), the light coming through the lens and onto the image sensor can have varying degrees of distortion. There are commercially available software titles that rely on a library of known cameras, lenses, and configurations for removing lens distortion. However, to use these software titles the camera manufacturer, model, lens and focal length must be known. This paper presents two methodologies for removing lens distortion when camera and lens specific information is not available. The first methodology uses linear objects within the photograph to determine the amount of lens distortion present. This method will be referred to as the straight-line method.
Technical Paper

An Analytical Review and Extension of Two Decades of Research Related to PC-Crash Simulation Software

2018-04-03
2018-01-0523
PC-Crash is a vehicular accident simulation software that is widely used by the accident reconstruction community. The goal of this article is to review the prior literature that has addressed the capabilities of PC-Crash and its accuracy and reliability for various applications (planar collisions, rollovers, and human motion). In addition, this article aims to add additional analysis of the capabilities of PC-Crash for simulating planar collisions and rollovers. Simulation analysis of five planar collisions originally reported and analyzed by Bailey [2000] are reexamined. For all five of these collisions, simulations were obtained with the actual impact speeds that exhibited excellent visual agreement with the physical evidence. These simulations demonstrate that, for each case, the PC-Crash software had the ability to generate a simulation that matched the actual impact speeds and the known physical evidence.
X