Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

2006-07-17
2006-01-2238
In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Weathering of Thermal Control Coatings

2007-07-09
2007-01-3020
Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an appliqué. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliqués upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel.
Technical Paper

Thermal Engineering of Mars Entry Carbon/Carbon Non-Ablative Aeroshell - Part 3

2001-07-09
2001-01-2279
This is Part 3 of a development program to evaluate candidate nonablative aeroshell designs. The primary goal of this C/C aeroshell development task was to demonstrate the feasibility and performance of a lightweight C/C non-ablative aeroshell design that integrates advanced C/C materials and structural configurations. The thermal performance was evaluated by Arc Jet testing at NASA Ames of representative structural models. In this phase of the program, new carbon-carbon materials and structural core designs were evaluated, as well as an alternative aerogel material. The test models were composed of a quasi-isotropic Carbon/Carbon(C/C) front face sheet (F/S), eggcrate or honeycomb core, C/C back F/S, Carbon and resorcinol-formaldehyde aerogel insulation. Part One of this work [1] demonstrated the feasibility through arc-jet testing and Part Two [2] included analytical modeling of the test geometry to validate the design.
Technical Paper

Thermal Engineering of Mars Entry Carbon/Carbon Non-Ablative Aeroshell - Part 2

2000-07-10
2000-01-2404
Candidate Aeroshell Test models composed of a quasi-isotropic Carbon/Carbon(C/C) front face sheet (F/S), eggcrate core, C/C back F/S, Carbon Aerogel insulation, C/C radiation shield and the C/C close-out were constructed based on the analytical temperature predictions presented in Part One of this work[1]. The analytical results obtained for a simulated Mars entry of a 2.9 meter diameter cone shaped Carbon-Carbon Aeroshell demonstrated the feasibility of the design. These results showed that the maximum temperature the front F/S reached during the decent was 1752 °C with the resulting rear temperature reaching 326 °C in the thermal model. Part Two of this work documents the thermal modeling and correlation for the Mars Aeroshell test sample and fixture. A finite difference, SINDA/G, thermal math model of the test fixture and sample was generated and correlated to data from an arc jet test conducted at the NASA Ames Research Center's interactive heating facility.
Technical Paper

Thermal Analysis of Compressible CO2 Flow for PFE TeSS Nozzle of Fire Detection System

2002-07-15
2002-01-2347
A thermal analysis of the compressible carbon dioxide (CO2) flow for the Portable Fire Extinguisher (PFE) system has been performed. A SINDA/FLUINT model has been developed for this analysis. The model includes the PFE tank and the Temporary Sleep Station (TeSS) nozzle, and both have an initial temperature of 72 °F. In order to investigate the thermal effect on the nozzle due to discharging CO2, the PFE TeSS nozzle pipe has been divided into three segments. This model also includes heat transfer predictions for PFE tank inner and outer wall surfaces. The simulation results show that the CO2 discharge rates and component wall temperatures fall within the requirements for the PFE system. The simulation results also indicate that after 50 seconds, the remaining CO2 in the tank may be near the triple point (gas, liquid and solid) state and, therefore, restricts the flow.
Technical Paper

The CEV Smart Buyer Team Effort: A Summary of the Crew Module & Service Module Thermal Design Architecture

2007-07-09
2007-01-3046
The NASA-wide CEV Smart Buyer Team (SBT) was assembled in January 2006 and was tasked with the development of a NASA in-house design for the CEV Crew Module (CM), Service Module (SM), and Launch Abort System (LAS). This effort drew upon over 250 engineers from all of the 10 NASA Centers. In 6 weeks, this in-house design was developed. The Thermal Systems Team was responsible for the definition of the active and passive design architecture. The SBT effort for Thermal Systems can be best characterized as a design architecting activity. Proof-of-concepts were assessed through system-level trade studies and analyses using simplified modeling. This nimble design approach permitted definition of a point design and assessing its design robustness in a timely fashion. This paper will describe the architecting process and present trade studies and proposed thermal designs
Technical Paper

Testing and Analysis of an Environmental System Test Stand

2003-07-07
2003-01-2361
Thermal control systems for space application plant growth chambers offer unique challenges. The ability to control temperature and humidity independently gives greater flexibility for optimizing plant growth. Desired temperature and relative humidity range vary widely from 15°C to 35°C and 65% to 85% respectively. On top of all of these variables, the thermal control system must also be conservative in power and mass. These requirements to develop and test a robust thermal control system for space applications led to the design and development of the Environmental System Test Stand (ESTS) at NASA Johnson Space Center (JSC). The ESTS was designed to be a size constrained, environmental control system test stand with the flexibility to allow for a variety of thermal and lighting technologies. To give greater understanding to the environmental control system, the development of the ESTS included both mathematical models and the physical test stand.
Technical Paper

Standardized Radiation Shield Design Method: 2005 HZETRN

2006-07-17
2006-01-2109
Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.
Technical Paper

Spacesuit Radiation Shield Design Methods

2006-07-17
2006-01-2110
Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable.
Technical Paper

Space Crew Radiation Exposure Analysis System Based on a Commercial Stand-Alone CAD System

1992-07-01
921372
Major improvements have recently been completed in the approach to spacecraft shielding analysis. A Computer-Aided Design (CAD)-based system has been developed for determining the shielding provided to any point within or external to the spacecraft. Shielding analysis is performed using a commercially available stand-alone CAD system and a customized ray-tracing subroutine contained within a standard engineering modeling software package. This improved shielding analysis technique has been used in several vehicle design projects such as a Mars transfer habitat, pressurized lunar rover, and the redesigned Space Station. Results of these analyses are provided to demonstrate the applicability and versatility of the system.
Technical Paper

Solar Proton Event Observations at Mars with MARIE

2003-07-07
2003-01-2329
The 2001 Mars Odyssey spacecraft Martian Radiation Environment Experiment (MARIE) is a solid-state silicon telescope high-energy particle detector designed to measure galactic cosmic radiation (GCR) and solar particle events (SPEs) in the 20 – 500 MeV/nucleon energy range. In this paper we discuss the instrument design and focus on the observations and measurements of SPEs at Mars. These are the first-ever SPE measurements at Mars. The measurements are compared with the geostationary GOES satellite SPE measurements. We also discuss some of the current interplanetary particle propagation and diffusion theories and models. The MARIE SPE measurements are compared with these existing models.
Technical Paper

Simulation Study of Space Suit Thermal Control

2000-07-10
2000-01-2391
Automatic thermal comfort control for the minimum consumables PLSS is undertaken using several control approaches. Accuracy and performance of the strategies using feedforward, feedback, and gain scheduling are evaluated through simulation, highlighting their advantages and limitations. Implementation issues, consumable usage, and the provision for the extension of these control strategies to the cryogenic PLSS are addressed.
Technical Paper

SAWD II Subsystem Integration into the Variable Pressure Growth Chamber: A Systems Level Analysis Using CASE/A

1994-06-01
941451
The NASA Johnson Space Center has plans to integrate a Solid Amine Water Desorbed (SAWD II) carbon dioxide removal subsystem into the Variable Pressure Growth Chamber (VPGC). The SAWD II subsystem will be used to remove any excess carbon dioxide (CO2) input into the VPGC which is not assimilated by the plants growing in the chamber. An analysis of the integrated VPGC-SAWD II system was performed using a mathematical model of the system implemented in the Computer-Aided System Engineering and Analysis (CASE/A) package. The analysis consisted of an evaluation of the SAWD II subsystem configuration within the VPGC, the planned operations for the subsystem, and the overall performance of the subsystem and other VPGC subsystems. Based on the model runs, recommendations were made concerning the SAWD II subsystem configuration and operations, and the chambers' automatic CO2 injection control subsystem.
Technical Paper

Regenerative Water Recovery System Testing and Model Correlation

1997-07-01
972550
Biological wastewater processing has been under investigation by AlliedSignal Aerospace and NASA Johnson Space Center (JSC) for future use in space. Testing at JSC in the Hybrid Regenerative Water Recovery System (HRWRS) in preparation for future closed human testing has been performed. Computer models have been developed to aid in the design of a new four-person immobilized cell bioreactor. The design of the reactor and validation of the computer model is presented. In addition, the total organic carbon (TOC) computer model has been expanded to begin investigation of nitrification. This model is being developed to identify the key parameters of the nitrification process, and to improve the design and operating conditions of nitrifying bioreactors. In addition, the model can be used as a design tool to rapidly predict the effects of changes in operational conditions and reactor design, significantly reducing the number and duration of experiments required.
Technical Paper

Rapid Microbial Analysis during Simulated Surface EVA at Meteor Crater: Implications for Human Exploration of the Moon and Mars

2006-07-17
2006-01-2006
Procedures for rapid microbiological analysis were performed during simulated surface extra-vehicular activity (EVA) at Meteor Crater, Arizona. The fully suited operator swabbed rock (‘unknown’ sample), spacesuit glove (contamination control) and air (negative control). Each swab sample was analyzed for lipopolysaccharide (LPS) and β-1, 3-glucan within 10 minutes by the handheld LOCAD PTS instrument, scheduled for flight to ISS on space shuttle STS-116. This simulated a rapid and preliminary ‘life detection’ test (with contamination control) that a human could perform on Mars. Eight techniques were also evaluated for their ability to clean and remove LPS and β-1, 3-glucan from five surface materials of the EVA Mobility Unit (EMU). While chemical/mechanical techniques were effective at cleaning smooth surfaces (e.g. RTV silicon), they were less so with porous fabrics (e.g. TMG gauntlet).
Technical Paper

Modeling of Membrane Processes for Air Revitalization and Water Recovery

1992-07-01
921352
Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudo-steady-state conditions.
Technical Paper

Methodologies for Critical Body Organ Space Radiation Risk Assessments

1993-07-01
932211
One of the risks associated with long-term space flights is cancer incidence resulting from chronic exposure to space radiation. Assessment of incurred risk from radiation exposure requires quantifying the dose throughout the body. The space radiation exposure received by Space Shuttle astronauts is measured by thermoluminescent dosimeters (TLDs) worn during every mission. These dosimeters measure the absorbed dose to the skin, but the dose to internal organs is required for estimating the cancer risk induced by space radiation. A method to extrapolate these skin dose measurements to realistic organ specific dose estimates, using the Computerized Anatomical Man (CAM) and Computerized Anatomical Female (CAF) models, is discussed in detail. A transport code, which propagates high energy nucleon and charged particles, is combined with the CAM/CAF-generated shielding areal distributions to evaluate the absorbed dose at selected organ sites.
Technical Paper

Mathematical Modeling of Food Systems for Long-Term Space Missions

2002-07-15
2002-01-2290
The quantitative analysis of the food system for long-term space missions is a crucial factor for the comparison of different food plans and for the evaluation of the food system as part of the overall mission. Such analysis should include important factors such as nutrition, palatability, diet cycle length, and psychological issues related to food. This paper will give the details of a mathematical model that was developed during the first author's participation as a Summer Faculty Fellow at Johnson Space Center. The model includes nutrition, palatability, diet cycle length, and psychological issues as important components. The model is compatible with the Equivalent System Mass (ESM) metric previously developed as the Advance Life Support (ALS) Research and Technology Metric.
Technical Paper

Margin Determination in the Design and Development of a Thermal Control System

2004-07-19
2004-01-2416
A method for determining margins in conceptual-level design via probabilistic methods is described. The goal of this research is to develop a rigorous foundation for determining design margins in complex multidisciplinary systems. As an example application, the investigated method is applied to conceptual-level design of the Mars Exploration Rover (MER) cruise stage thermal control system. The method begins with identifying a set of tradable system-level parameters. Models that determine each of these tradable parameters are then created. The variables of the design are classified and assigned appropriate probability density functions. To characterize the resulting system, a Monte Carlo simulation is used. Probabilistic methods can then be used to represent uncertainties in the relevant models. Lastly, results of this simulation are combined with the risk tolerance of thermal engineers to guide in the determination of margin levels.
Technical Paper

Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions

2007-07-09
2007-01-3116
Protecting astronauts from space radiation exposure is an important challenge for mission design and operations for future exploration-class and long-duration missions. Crew members are exposed to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). If sufficient protection is not provided the radiation risk to crew members from SPEs could be significant. To improve exposure risk estimates and radiation protection from SPEs, detailed evaluations of radiation shielding properties are required. A model using a modern CAD tool ProE™, which is the leading engineering design platform at NASA, has been developed for this purpose. For the calculation of radiation exposure at a specific site, the cosine distribution was implemented to replicate the omnidirectional characteristic of the 4π particle flux on a surface.
X