Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Car Sound Synthesis Technique for Brand Sound Design of Hybrid and Electric Vehicles

2012-11-25
2012-36-0614
One of the practical consequences of the development of low CO₂ emission cars is that many of the traditional NVH sound engineering processes no longer apply and must be revisited. Different and new sound sources, new constraints on vehicle body design (e.g., due to weight) and new sound perception characteristics make that the NVH knowledge built on generations of internal combustion-powered vehicles cannot be simply transferred to Hybrid and Electric Vehicles (HEV). Hence, the applicability of tools must be reviewed and extensions need to be developed where necessary. This paper focuses on sound synthesis tools as developed for ICE-powered vehicles. Because of the missing masking effect and the missing intake and exhaust noise of the Internal Combustion Engine (ICE) in electric vehicles, on one hand electric vehicles are quieter than traditional vehicles.
Technical Paper

Vibration Testing and Modal Analysis of Airplanes – Recent Advances

2004-11-02
2004-01-3140
The paper will introduce some recent advances in vibration testing and modal analysis of airplanes. Recently, a very promising parameter estimation method became available, that has the potential to become the new standard. The main advantage of this so-called PolyMAX method is that it yields extremely clear stabilization diagrams even for broadband and high-order analyses. The method will be applied to two aircraft cases: a Ground Vibration Test using broadband shaker excitation on a small composite aircraft and in-flight data using natural turbulences as excitation. These two data sets allow illustrating both the classical Frequency Response Function based as well as the operational output-only modal analysis process.
Technical Paper

Vibration Qualification Test of an Aircraft Piccolo Tube Using Multiple-Input-Multiple-Output Control Technology

2013-09-17
2013-01-2315
Wing Anti-Icing Systems (WAIS) are integral part of a wing design. Their presence ensures safety in all-weather conditions. In standard designs, the WAIS are fitted in the slat internal structure and runs throughout its span in between the ribs. Given its critical function, such a system has to pass qualification test. The test specification is dictated by international standards. In the case discussed in this article, the standard adopted is the RTCA DO-160G “Environmental Conditions and Test Procedures for Airborne Equipment”. In particular, the work presented here concerns with the Vibration environmental test. The standard prescribes a number of dynamic tests to be carried out on the AIS: random, shock and sine excitation tests have to be performed in order to study their effect on the parts composing the Anti-Icing System. The standard prescribes vibration levels at the attachment locations of the AIS to the wings' ribs.
Technical Paper

Using Mechanical-Acoustic Reciprocity for Diagnosis of Structure Borne Sound in Vehicles

1993-05-01
931340
The low frequency interior noise in cars is for a large part the result of structure borne excitation. The transfer of the structure borne sound involves a large number of components of the engine suspension, wheel suspension and chassis which are all potentially contributing to the overall noise level. This process can be analyzed through a combination of transfer function measurements with operational measurements under normal conditions. This technique, called transfer path analysis, requires large numbers of transfer function measurements with excitation of the body or cabin at the rubber mountings. Unfortunately, bad access to these crucial measurement locations causes either high instrumentation and measurement effort or less accurate measurement data. The practicality and quality of the measurements can be improved by using reciprocal measurements for the mechano-acoustic transfer of the body or cabin structure; a loudspeaker in the cavity is used for the reciprocal excitation.
Technical Paper

Updating of Dynamic Finite Element Models Based on Experimental Receptances and the Reduced Analytical Dynamic Stiffness Matrix

1995-05-01
951247
This paper presents a model updating method based on experimental receptances. The presented method minimises the so called ‘indirect receptance difference’. First, the reduced analytical dynamic stiffness matrix is expressed as an approximate, linearised function of the updating parameters. In a numerically stable, iterative procedure, this reduced analytical dynamic stiffness matrix is changed in such a way that the analytical receptances match the experimental receptances at the updating frequencies. The updating frequencies are a set of selected frequency points in the frequency range of interest. Some considerations about an optimal selection of the updating frequencies are given. Finally, a mixed static-dynamic reduction scheme is discussed. Dynamic reduction of the analytical dynamic stiffness matrix at each updating frequency is physically exact, but it involves a great computational effort.
Technical Paper

Title: Development of Reusable Body and Comfort Software Functions

2013-04-08
2013-01-1403
The potential to reduce the cost of embedded software by standardizing the application behavior for Automotive Body and Comfort domain functions is explored in this paper. AUTOSAR, with its layered architecture and a standard definition of the interfaces for Body and Comfort application functions, has simplified the exchangeability of software components. A further step is to standardize the application behavior, by developing standard specifications for common Body and Comfort functions. The corresponding software components can be freely exchanged between different OEM/Tier-1 users, even if developed independently by multiple suppliers. In practice, individual OEM users may need to maintain some distinction in the functionality. A method of categorizing the specifications as ‘common’ and ‘unique’, and to configure them for individual applications is proposed. This allows feature variability by means of relatively simple adapter functions.
Technical Paper

Tire and Car Contribution and Interaction to Low Frequency Interior Noise

2001-04-30
2001-01-1528
A joint study was conducted between BMW and Goodyear with the objective of analysing the cause and identifying methods to reduce the structure-borne interior noise in a vehicle driving on rough road surfaces. A vibro-acoustic characterization of the car was performed by measuring the car vibro-acoustic transfer functions and by using a transfer path analysis technique to identify the main suspension parts affecting the interior noise at target frequencies. The vibration transmissibility characteristics of the tire were measured and also simulated by Finite Element in [1-200Hz] frequency range. The vibro-acoustic interaction between the tire and car sub-systems was examined. A Finite Element sensitivity analysis was used to define and build new prototype tires. A 3dB(A) interior noise improvement was obtained with these new tires at target frequencies.
Technical Paper

Time-domain Transfer Path Analysis for Transient Phenomena Applied to Tip-in/Tip-out (Shock & Jerk)

2012-06-13
2012-01-1545
Tip-in/Tip-out of the accelerator pedal generates transient torque oscillations in the driveline. These oscillations may be amplified by P/T, suspension and body modes and will eventually be sensible at the receiver side in the vehicle, for example at the seat or at the steering-wheel. The forces that are active during this transient excitation are influenced by non-linear effects in both the suspension and the power train mounts. In order to understand the contribution of each of these forces to the total interior target response (e.g. seat rail vibration) a detailed investigation is performed. Traditional force identification methods are not suitable for low-frequent, transient phenomena like tip-in/tip-out. Mount stiffness method can not be used because of non-linear effects in the P/T and suspension mounts. Application of matrix inversion method based on trimmed body vibration transfer functions is not possible due to numerical condition problems.
Technical Paper

Time-Domain Source Contribution Analysis Method for In-Room Pass-By Noise

2011-05-17
2011-01-1609
This paper presents a new time-domain source contribution analysis method for in-room pass-by noise. The core of the method is a frequency-domain ASQ model (Airborne Source Quantification) representing each noise generating component (engine, exhaust, left and right tyres, etc.) by a number of acoustic sources. The ASQ model requires the measurement of local FRF's and acoustic noise transfer functions to identify the operational loads from nearby pressure indicator responses and propagate the loads to the various target microphones on the sides of the vehicle. Once a good ASQ model is obtained, FIR filters are constructed, allowing a time-domain synthesis of the various source contributions to each target microphone. The synthesized target response signals are finally recombined into a pass-by sound by taking into account the speed profile of the vehicle.
Technical Paper

Synthesis of Drive-by Noise Based on Numerically Evaluated Source-Receiver Transfer Functions Employing the FMBEM

2011-05-17
2011-01-1610
Prediction of the drive-by noise level in the early design stage of an automotive vehicle is feasible if the source signatures and source-receiver transfer functions may be determined from simulations based on the available CAD/CAE models. This paper reports on the performance of a drive-by noise synthesis procedure in which the transfer functions are numerically evaluated by employing the Fast Multipole Boundary Element Method (FMBEM). The proposed synthesis procedure first computes the steady-state receiver contributions of the sources as appearing from a number of vehicle positions along the drive path. In a second step, these contributions are then combined into a single transient signal from a moving vehicle for each source-receiver pair by means of a travel time correction.
Technical Paper

Suspension Analysis in View of Road Noise Optimization

1993-05-01
931343
As powertrain noise is better and better controlled, road inputs become more important. The trend to mount 6 cylinder engines in smaller cars also emphasizes the importance of road induced noise. A method to qualify and quantify the different contributions is presented and illustrated. This methodology is based on a novel combination of existing technology: transferpath analysis, traditionally used for ranking of powertrain inputs on one hand and principal component analysis, traditionally used for visualisation of operating shapes in a multiple uncorrelated input environment. As suspension inputs represent multiple incoherent sources, the classical vector summation used in noise path analysis is not applicable. On the other hand, root mean square summation of all contributions does not keep track of phase relations between suspension-body connections which are important in the understanding of the global picture.
Technical Paper

Structural Modelling of Car Panels Using Holographic Modal Analysis

1999-05-17
1999-01-1849
In order to optimise the vibro-acoustic behaviour of panel-like structures in a more systematic way, accurate structural models are needed. However, at the frequencies of relevance to the vibro-acoustic problem, the mode shapes are very complex, requiring a high spatial resolution in the measurement procedure. The large number of required transducers and their mass loading effects limit the applicability of accelerometer testing. In recent years, optical measuring methods have been proposed. Direct electronic (ESPI) imaging, using strobed continuous laser illumination, or more recently, pulsed laser illumination, have lately created the possibility to bring the holographic testing approach to the level of industrial applicability for modal analysis procedures. The present paper discusses the various critical elements of a holographic ESPI modal testing system.
Technical Paper

Sound Quality Equivalent Modeling for Virtual Car Sound Synthesis

2001-04-30
2001-01-1540
The pressure on development cycles in the automotive industry forces the acoustical engineers to create awareness of sound quality in the early stages of development, perhaps even before a physical prototype is available. Currently, designers have few tools to help them listen to their “virtual” models. For the design of a synthesis platform of in-vehicle binaural sound, the sound should be modeled with almost identical sound quality perception. A concept is presented where the total sound of a vehicle is split in a number of components, each with its own sound characteristics. These characteristics are described in a signal model that allows the analysis of an existing sound into a limited number of signal components: orders-frequency spectra, time envelopes and time recordings.
Technical Paper

Sizing in Conceptual Design at BMW

2004-03-08
2004-01-1657
In the early stages of conceptual design the available geometric data are very coarse and the lifespan of a design idea is very short. The structural evaluation and improvement of a design has to take both facts into account. Its focus is on the total vehicle and its performance. This can be estimated by a modeling technique, which is adequate for the lack of geometric details. Static and dynamic global stiffness as well as some aspects of crash and NVH have to be considered. Optimization will lead to the proper sizing and some indication of the potential of the structure. In order to maintain high quality standards this approach has to be supported by specialized CAE tools and extensive rules on modeling techniques and analysis procedures.
Technical Paper

Simulation Driven Design of HVAC Systems under Competing HVAC Noise and Defrost Performance Requirements

2021-08-31
2021-01-1020
It is particularly easy to get tunnel vision as a domain expert, and focus only on the improvements one could provide in their area of expertise. To make matters worse, many Original Equipment Manufacturers (OEMs) are silo-ed by domain of expertise, unconsciously promoting this single mindedness in design. Unfortunately, the successful and profitable development of a vehicle is dependent on the delicate balance of performance across many domains, involving multiple physics and departments. Taking for instance the design of a Heating, Ventilation & Air Conditioning (HVAC) system, the device’s primary function is to control the climate system in vehicle cabins, and more importantly to make sure that critical areas on the windshield can be defrosted in cold weather conditions within regulation time. With the advent of electric and autonomous vehicles, further importance is now also placed on the energy efficiency of the HVAC, and its noise.
Technical Paper

Simulating Acoustic Engine Performance Over a Broad Frequency Range

2011-01-19
2011-26-0019
Acoustic performance of vehicle engines is a real challenge for powertrain design engineers. Quiet engines are required to reduce noise pollution and satisfy pass-by noise regulations, but also to improve the driving comfort. Simulation techniques such as the Boundary Element Method (BEM) have already been available for some time and allow predicting the vibro-acoustic response of engines. Although the accuracy of these simulation techniques has been proven, a challenge still remains in the required computation time. Given the large amount of speeds for a full engine run-up and the need to cover a large frequency range, computation times are significant, which limits the possibility to perform many design iterations to optimize the system. In 2001, Acoustic Transfer Vectors (ATV) [1] have been presented to adequately deal with multiple rpm. The ATV provide the acoustic response for unit surface velocities and are therefore independent from the engine's actual surface vibrations.
Technical Paper

Seat Belt Retractor Noise Test Correlation to 2DOF Shaker Test and Real Vehicle Comfort

2018-06-13
2018-01-1507
Seatbelt retractors as important part of modern safety systems are mounted in any automotive vehicle. Their internal locking mechanism is based on mechanically sensing elements. When the vehicle is run over rough road tracks, the retractor oscillates by spatial mode shapes and its interior components are subjected to vibrations in all 6 degrees of freedoms (DOF). Functional backlash of sensing elements cause impacts with neighbouring parts and leads to weak, but persistent rattle sound, being often rated acoustically annoying in the vehicle. Current acoustic retractor bench tests use exclusively uni-directional excitations. Therefore, a silent 2 DOF test bench is developed to investigate the effect of multi-dimensional excitation on retractor acoustics, combining two slip-tables, each driven independently by a shaker. Tests on this prototype test bench show, that cross coupling between the two perpendicular directions is less than 1%, allowing to control both directions independently.
Technical Paper

Robustness and Reliability Enhancement on Retractor Noise Testing, from Development Considerations to Round Robin

2018-06-13
2018-01-1533
Sensing and acting elements to guarantee the locking functions of seat belt retractors can emit noise when the retractor is subjected to externally applied vibrations. For these elements to function correctly, stiffness, inertia and friction needs to be in tune, leading to a complex motion resistance behavior, which makes it delicate to test for vibration induced noise. Requirements for a noise test are simplicity, robustness, repeatability, and independence of laboratory and test equipment. This paper reports on joint development activities for an alternative test procedure, involving three test laboratories with different equipment. In vehicle observation on parcel shelf mounted retractors, commercially available test equipment, and recent results from multi-axial component tests [1], set the frame for this work. Robustness and reliability of test results is being analyzed by means of sensitivity studies on several test parameters.
Technical Paper

Reducing Body Development Time by Integrating NVH and Durability Analysis from the Start

2006-04-03
2006-01-1228
Due to the trend to build more vehicle models on a common platform, body development is very often on the critical path in the automotive development process. While the virtual assessment of attributes like crash, structural rigidity or production feasibility is common practice today, it is done less systematically for NVH and durability. They are traditionally only considered close to the availability of prototypes. Performance issues discovered at this stage will lead to additional design cycles which conflicts with the need to further shorten the total development time. The process proposed in this paper results in a better initial design by doing more NVH analysis in the pre-CAD phase and a reduced number of iteration cycles required for NVH and durability engineering by iterating much faster to the final design. Mesh morphing and beam concept analysis make it possible to evaluate and optimize functional performance characteristics based upon predecessor FE models.
Technical Paper

Realistic Driving Experience of New Vehicle Concepts on the BMW Ride Simulator

2012-06-13
2012-01-1548
Nowadays, a continually growing system complexity due to the development of an increasing number of vehicle concepts in a steadily decreasing development time forces the engineering departments in the automotive industry to a deepened system understanding. The virtual design and validation of individual components from subsystems up to full vehicles becomes an even more significant role. As an answer to the challenge of reducing complete hardware prototypes, the virtual competence in NVH, among other methods, has been improved significantly in the last years. At first, the virtual design and validation of objectified phenomena in analogy to hardware tests via standardized test rigs, e.g. four poster test rig, have been conceived and validated with the so called MBS (Multi Body Systems).
X