Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context

2004-06-08
2004-01-1924
A consortium of CONCAWE, EUCAR and the EU Commission's JRC carried out a Well-to-Wheels analysis of a wide range of automotive fuels and powertrains. The study gives an assessment of the energy consumption and greenhouse gas emissions for each pathway. It also considers macroeconomic costs and the market potential of alternative fuels.
Technical Paper

Validation of Eulerian-Lagrangian Spray Atomization Modeling against Gasoline Fuel

2021-02-24
2021-01-5027
Combustion in any engine starts with the injection of fuel into the combustion chamber. Atomization of fuel and its mixing plays a vital role in determining the suitable air-fuel (A/F) ratio. Appropriate A/F ratio determines the amount of energy release and pollutant formation for standard engines. Thus an accurate prediction of these processes is required to perform reliable combustion and pollutant formation simulations. In this study, the Eulerian-Lagrangian Spray Atomization (ELSA) model is implemented as a Computational Fluid Dynamics (CFD) tool for the prediction of spray behavior. Past studies performed on diesel fuel suggest good agreement between experiment and simulation indicating the model’s capability. The study aims to validate the ELSA model for gasoline fuel against the test results obtained from Renault and against the pure Lagrangian spray model. The simulations have been performed using CONVERGE CFD v2.4.18.
Journal Article

Validation and Application of a New 0D Flame/Wall Interaction Sub Model for SI Engines

2011-08-30
2011-01-1893
To improve the prediction of the combustion processes in spark ignition engines, a 0D flame/wall interaction submodel has been developed. A two-zones combustion model is implemented and the designed submodel for the flame/wall interaction is included. The flame/wall interaction phenomenon is conceived as a dimensionless function multiplying the burning rate equation. The submodel considers the cylinder shape and the flame surface that spreads inside the combustion chamber. The designed function represents the influence of the cylinder walls while the flame surface propagates across the cylinder. To determine the validity of the combustion model and the flame/wall interaction submodel, the system was tested using the available measurements on a 2 liter SI engine. The model was validated by comparing simulated cylinder pressure and energy release rate with measurements. A good agreement between the implemented model and the measurements was obtained.
Journal Article

Towards an Innovative Combination of Natural Gas and Liquid Fuel Injection in Spark Ignition Engines

2010-05-05
2010-01-1513
In order to address the CO₂ emissions issue and to diversify the energy for transportation, CNG (Compressed Natural Gas) is considered as one of the most promising alternative fuels given its high octane number. However, gaseous injection decreases volumetric efficiency, impacting directly the maximal torque through a reduction of the cylinder fill-up. To overcome this drawback, both independent natural gas and gasoline indirect injection systems with dedicated engine control were fitted on a RENAULT 2.0L turbocharged SI (Spark Ignition) engine and were adapted for simultaneous operation. The main objective of this innovative combination of gas and liquid fuel injections is to increase the volumetric efficiency without losing the high knocking resistance of methane.
Technical Paper

The Potential of Highly Premixed Combustion for Pollutant Control in an Automotive Two-Stroke HSDI Diesel Engine

2012-04-16
2012-01-1104
An innovative alternative to overcome the load limits of the early injection highly premixed combustion concept consists of taking advantage of the intrinsic characteristics of two-stroke engines, since they can attain the full load torque of a four-stroke engine as the addition of two medium load cycles, where the implementation of this combustion concept could be promising. In this frame, the main objective of this investigation focuses on evaluating the potential of the early injection HPC concept using a conventional diesel fuel combined with a two-stroke poppet valves engine architecture for pollutant control, while keeping a competitive engine efficiency. On a first stage, the HPC concept was implemented at low engine load, where the concept is expected to provide the best results, by advancing the start of injection towards the compression stroke and it was confirmed how it is possible to reduce NOX and soot emissions, but increasing HC and CO emissions.
Technical Paper

System Optimization for a 2-Stroke Diesel Engine with a Turbo Super Configuration Supporting Fuel Economy Improvement of Next Generation Engines

2014-11-11
2014-32-0011
The objective of this paper is to present the results of the GT Power calibration with engine test results of the air loop system technology down selection described in the SAE Paper No. 2012-01-0831. Two specific boosting systems were identified as the preferred path forward: (1) Super-turbo with two speed Roots type supercharger, (2) Super-turbo with centrifugal mechanical compressor and CVT transmission both downstream a Fixed Geometry Turbine. The initial performance validation of the boosting hardware in the gas stand and the calibration of the GT Power model developed is described. The calibration leverages data coming from the tests on a 2 cylinder 2-stroke 0.73L diesel engine. The initial flow bench results suggested the need for a revision of the turbo matching due to the big gap in performance between predicted maps and real data. This activity was performed using Honeywell turbocharger solutions spacing from fixed geometry waste gate to variable nozzle turbo (VNT).
Technical Paper

System Approach for NOx Reduction: Double LNT Diesel After-Treatment Architecture

2011-04-12
2011-01-1300
This paper presents an after-treatment architecture combining a close coupled NOx trap and an under floor NOx trap. Instead of simply increasing the volume of the catalyst, we propose to broaden the active temperature window by splitting the LNT along the exhaust line. In order to design this architecture, a complete 1D model of NOx trap has been developed. Validated with respect to experimental data, this model has been useful to define the two volumes of LNT, making significant savings on the test bench exploitation. However, one of the main difficulties to operate the proposed architecture is the NOx purge and sulfur poisoning management. In order to optimize the NOx and sulfur purge launches, we have developed a control strategy based on an embedded reduced LNT model. These strategies have been validated on different driving cycles, by the means of simulation and of vehicle tests using rapid prototyping tools.
Technical Paper

Studying HCCI Combustion and its Cyclic Variations Versus Heat Transfer, Mixing and Discretization using a PDF Based Approach

2009-04-20
2009-01-0667
The ability to predict cyclic variations is certainly useful in studying engine operating regimes, especially under unstable operating conditions where one single cycle may differ from another substantially and a single simulation may give rather misleading results. PDF based models such as Stochastic Reactor Models (SRM) are able to model cyclic variations, but these may be overpredicted if discretization is too coarse. The range of cyclic variations and the dependence of the ability to correctly assess their mean values on the number of cycles simulated were investigated. In most cases, the average values were assessed correctly on the basis of as few as 10 cycles, but assessing the complete range of cyclic variations could require a greater number of cycles. In studying average values, variations due too coarse discretization being employed are smaller than variations originating from changes in physical parameters, such as heat transfer and mixing parameters.
Technical Paper

SprayLet: One-Dimensional Interactive Cross-Sectionally Averaged Spray Model

2023-08-28
2023-24-0083
Spray modeling is among the main aspects of mixture formation and combustion in internal combustion engines. It plays a major role in pollutant formation and energy efficiency although adequate modeling is still under development. Strong grid dependence is observed in the droplet-based stochastic spray model commonly used. As an alternative, an interactive model called 'SprayLet' is being developed for spray simulations based on one-dimensional integrated equations for the gas and liquid phases, resulting from cross-sectionally averaging of multi-dimensional transport equations to improve statistical convergence. The formulated one-dimensional cross-section averaged system is solved independently of the CFD program to provide source terms for mass, momentum and heat transfer between the gas and liquid phases. The transport processes take place in a given spray cone where the nozzle exit is automatically resolved.
Journal Article

Soot Simulation under Diesel Engine Conditions Using a Flamelet Approach

2009-11-02
2009-01-2679
The subject of this work is 3D numerical simulations of combustion and soot emissions for a passenger car diesel engine. The CFD code STAR-CD version 3.26 [1] is used to resolve the flowfield. Soot is modeled using a detailed kinetic soot model described by Mauss [2]. The model includes a detailed description of the formation of polyaromatic hydrocarbons. The coupling between the turbulent flowfield and the soot model is achieved through a flamelet library approach, with transport of the moments of the soot particle size distribution function as outlined by Wenzel et al. [3]. In this work we extended this approach by considering acetylene feedback between the soot model and the combustion model. The model was further improved by using new gas-phase kinetics and new fitting procedures for the flamelet soot library.
Technical Paper

Simulation of CNG Engine in Agriculture Vehicles. Part 2: Coupled Engine and Exhaust Gas Aftertreatment Simulations Using a Detailed TWC Model

2023-08-28
2023-24-0112
In more or less all aspects of life and in all sectors, there is a generalized global demand to reduce greenhouse gas (GHG) emissions, leading to the tightening and expansion of existing emissions regulations. Currently, non-road engines manufacturers are facing updates such as, among others, US Tier 5 (2028), European Stage V (2019/2020), and China Non-Road Stage IV (in phases between 2023 and 2026). For on-road applications, updates of Euro VII (2025), China VI (2021), and California Low NOx Program (2024) are planned. These new laws demand significant reductions in nitrogen oxides (NOx) and particulate matter (PM) emissions from heavy-duty vehicles. When equipped with an appropriate exhaust aftertreatment system, natural gas engines are a promising technology to meet the new emission standards.
Technical Paper

Simulation of CNG Engine in Agriculture Vehicles. Part 1: Prediction of Cold Start Engine-Out Emissions Using Tabulated Chemistry and Stochastic Reactor Model

2023-08-28
2023-24-0006
Worldwide, there is the demand to reduce harmful emissions from non-road vehicles to fulfill European Stage V+ and VI (2022, 2024) emission legislation. The rules require significant reductions in nitrogen oxides (NOx), methane (CH4) and formaldehyde (CH2O) emissions from non-road vehicles. Compressed natural gas (CNG) engines with appropriate exhaust aftertreatment systems such as three-way catalytic converter (TWC) can meet these regulations. An issue remains for reducing emissions during the engine cold start where the CNG engine and TWC yet do not reach their optimum operating conditions. The resulting complexity of engine and catalyst calibration can be efficiently supported by numerical models. Hence, it is required to develop accurate simulation models which can predict cold start emissions. This work presents a real-time engine model for transient engine-out emission prediction using tabulated chemistry for CNG.
Technical Paper

Simulation Strategy for Structure Borne Noise Sources: Use of Super Elements and Blocked Forces Tensors between Suppliers and OEMs to Validate Components at Early Design Stage

2018-06-13
2018-01-1509
This paper is a case study from the TESSA project (French funded research program “Transfert des Efforts des Sources Solidiennes Actives”). The general frame of the work was to assess a collaborative design process between a car manufacturer and a major supplier using FE modelling and condensation of structure borne noise sources as an alternative to classic specification method for structure borne sources. Super elements from different FE commercial softwares have been used to assess the reliability of the method, the compatibility of the softwares and, most important, the relevance of applying a blocked force tensor to the component super element to predict the interior contribution of a component which is the originality of this work. The case study is an internal combustion engine cooling module (fan + shroud + exchangers) from VALEO including all assembly details (clips, decoupling elements) modelled under ABAQUS and its integration in a RENAULT Espace under NASTRAN.
Technical Paper

Quantifying Benefits of Dual Cam Phasers, Lean Mixture and EGR on the Operating Range and Fuel Economy of a PFI NVO CAI Engine

2010-04-12
2010-01-0844
Among the existing concepts that help to improve the efficiency of spark-ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions. This combustion concept is based on the auto-ignition of an air-fuel-mixture highly diluted with hot burnt gases to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. To minimize the costs of conversion of a standard spark-ignition engine into a CAI engine, the present study is restricted to a Port Fuel Injection engine with a cam-profile switching system and a cam phaser on both intake and exhaust sides. In a 4-stroke engine, a large amount of burnt gases can be trapped in the cylinder via early closure of the exhaust valves. This so-called Negative Valve Overlap (NVO) strategy has a key parameter to control the amount of trapped burnt gases and consequently the combustion: the exhaust valve-lift profile.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
Journal Article

Preliminary Design of a Two-Stroke Uniflow Diesel Engine for Passenger Car

2013-04-08
2013-01-1719
The target of substantial CO₂ reductions in the spirit of the Kyoto Protocol as well as higher engine efficiency requirements has increased research efforts into hybridization of passenger cars. In the frame of this hybridization, there is a real need to develop small Internal Combustion Engines (ICE) with high power density. The two-stroke cycle can be a solution to reach these goals, allowing reductions of engine displacement, size and weight while maintaining good NVH, power and consumption levels. Reducing the number of cylinders, could also help reduce engine cost. Taking advantage of a strong interaction between the design office, 0D system simulations and 3D CFD computations, a specific methodology was set up in order to define a first optimized version of a two-stroke uniflow diesel engine. The main geometrical specifications (displacement, architecture) were chosen at the beginning of the study based on a bibliographic pre-study and the power target in terms.
Technical Paper

Potential Levels of Soot, NOx, HC and CO for Methanol Combustion

2016-04-05
2016-01-0887
Methanol is today considered a viable green fuel for combustion engines because of its low soot emissions and the possibility of it being produced in a CO2-neutral manner. Methanol as a fuel for combustion engines have attracted interest throughout history and much research was conducted during the oil crisis in the seventies. In the beginning of the eighties the oil prices began to decrease and interest in methanol declined. This paper presents the emission potential of methanol. T-Φ maps were constructed using a 0-D reactor with constant pressure, temperature and equivalence ratio to show the emission characteristics of methanol. These maps were compared with equivalent maps for diesel fuel. The maps were then complemented with engine simulations using a stochastic reactor model (SRM), which predicts end-gas emissions. The SRM was validated using experimental results from a truck engine running in Partially Premixed Combustion (PPC) mode at medium loads.
Technical Paper

Optimum Diesel Fuel for Future Clean Diesel Engines

2007-01-23
2007-01-0035
Over the next decades to come, fossil fuel powered Internal Combustion Engines (ICE) will still constitute the major powertrains for land transport. Therefore, their impact on the global and local pollution and on the use of natural resources should be minimized. To this end, an extensive fundamental and practical study was performed to evaluate the potential benefits of simultaneously co-optimizing the system fuel-and-engine using diesel as an example. It will be clearly shown that the still unused co-optimizing of the system fuel-and-engine (including advanced exhaust after-treatment) as a single entity is a must for enabling cleaner future road transport by cleaner fuels since there are large, still unexploited potentials for improvements in road fuels which will provide major reductions in pollutant emissions both in vehicles already in the field and even more so in future dedicated vehicles.
Journal Article

Numerical Analysis of the Impact of Water Injection on Combustion and Thermodynamics in a Gasoline Engine Using Detailed Chemistry

2018-04-03
2018-01-0200
Water injection is a promising technology to improve the fuel efficiency of turbocharged gasoline engines due to the possibility to suppress engine knock. Additionally, this technology is believed to enable the efficient operation of the three-way catalyst also at high-load conditions, through limiting the exhaust temperature. In this numerical study, we investigate the effect of water on the chemical and thermodynamic processes using 3D computational fluid dynamics (CFD) Reynolds-averaged Navier–Stokes (RANS) with detailed chemistry. In the first step, the influence of different amounts of water vapor on ignition delay time, laminar flame speed, and heat capacity is investigated. In the second step, the impact of water vaporization is analyzed for port and direct injection. For this purpose, the water mass flow and the injection pressure are varied.
Technical Paper

Noise pollution – A breakthrough approach.

2024-06-12
2024-01-2919
Authors : Thomas ANTOINE, Christophe THEVENARD, Pierrick BOTTA, Jerome DESTREE, Alain Le Quenven Future noise emission limits for passenger car are going to lower levels by 2024 (Third phase of R51-03, with a limit of 68dBA for the pass by noise) –Social cost of noise for France in 2021, shows clearly that the dominant source of noise pollution is indeed road traffic (81 Bn€ for a total of 146 Bn€) This R51 regulation is meant to lower the noise pollution from road traffic, however when looking closer to the sound source and their contributions, in particular the tire/road noise interaction, the environmental efficiency of this regulation is questionable. Indeed: Tire/Road interaction involves tires characteristics, that are constrained by an array of specification for energy efficiency, safety (wet grip, braking, etc…) and it has been proven that there is a physical limit to what could be expected from the tire as far as tire/road interaction noise is concerned.
X