Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Wind Tunnel-to-Road Aerodynamic Drag Correlation

1988-02-01
880250
A comprehensive test program was conducted to correlate aerodynamic drag measurements from the General Motors Aerodynamics Laboratory with coastdown results. An improved method of coastdown testing was used to minimize the sources of error in determining aerodynamic drag. Several vehicles were tested, covering a large range of aerodynamic drag values, representative of current and future production vehicles. Wind tunnel and coastdown results were determined to be in good agreement, with an average drag coefficient difference of only. 008 (2%).
Technical Paper

WHERE DOES ALL THE POWER GO?

1957-01-01
570058
AS a basis for the analyses of this symposium, a hypothetical car has been used to evaluate the engine power distribution in performance. Effects of fuel,-engine accessories, and certain car accessories are evaluated. The role of the transmission in making engine power useful at normal car speeds is also discussed. Variables encountered in wind and rolling resistance determinations are reevaluated by improved test techniques. Net horsepower of the car in terms of acceleration, passing ability and grade capability are also summarized.
Technical Paper

Use of Layered Media for Noise Abatement in Automotive Interiors: A Balanced Approach

2001-04-30
2001-01-1456
Concepts for dual density materials for usage as absorbers and decouplers are based on well-established layered media principles and have been applied for many years in non-automotive applications. Balancing the mass, air flow resistance, and thickness allows for improved noise attenuation in the low to mid frequency range which is of particular interest for automotive NVH management. Using these principles, products were tuned via mass and airflow resistance to reduce noise levels while also significantly reducing mass. Validation in various vehicles confirmed that up to a 55% reduction of a sound package's mass is possible. The considerable weight reductions of dash insulators and carpet systems are possible at the same times as the sound level in the vehicle interior is at least maintained and frequently improved.
Technical Paper

Truck Aerodynamics

1962-01-01
620531
A requirement for larger trucks and higher operating speed is indicated. The present report presents wind tunnel data on drag of a Chevrolet truck-trailer combination. Possible means of drag reduction are examined. Although side force and yawing moment data are presented, their effect on directional stability are not, at present analyzed.
Technical Paper

The Oxidative Stability of GM's DEXRON®-VI Global Factory Fill ATF

2006-10-16
2006-01-3241
A detailed description of the oxidative stability of GM's DEXRON®-VI Factory Fill Automatic Transmission Fluid (ATF) is provided, which can be integrated into a working algorithm to estimate the end of useful oxidative life of the fluid. As described previously, an algorithm to determine the end of useful life of an automatic transmission fluid exists and is composed of two simultaneous counters, one monitoring bulk oxidation and the other monitoring friction degradation [1]. When either the bulk oxidation model or the friction model reach the specified limit, a signal can be triggered to alert the driver that an ATF change is required. The data presented in this report can be used to develop the bulk oxidation model. The bulk oxidation model is built from a large series of bench oxidation tests. These data can also be used independent of a vehicle to show the relative oxidation resistance of this fluid, at various temperatures, compared to other common lubricants.
Technical Paper

Relationship of Low-Temperature Cranking Resistance to Viscosity Characteristics of Multigrade Engine Oils

1956-01-01
560054
HOW well are multigrade oils performing at low temperatures? An investigation has shown that the low-tem perature properties of mulrigrade oils are often not equivalent to the single-grade oils-lOW in a mulrigrade oil may actually be 20W. One phase of this investigation, a full-scale cranking study using commercial 10W and 10W-30 oils in cars at 0 F, is discussed in detail in this paper.
Technical Paper

Refinement and Verification of the Structural Stress Method for Fatigue Life Prediction of Resistance Spot Welds Under Variable Amplitude Loads

2000-10-03
2000-01-2727
The work presented here builds on the practical and effective spot weld fatigue life prediction method, the structural stress method (SSM), that was developed at Stanford University. Constant amplitude loading tests for various spot weld joint configurations have been conducted and the SSM has been shown to accurately predict fatigue life. In this paper refinements to the structural stress approach are first presented, including a variable amplitude fatigue life prediction method based on the SSM and Palmgren-Miner's rule. A test matrix was designed to study the fatigue behavior of spot welds under tensile shear loading conditions. Constant amplitude tests under different R-ratios were performed first to obtain the necessary material properties. Variable amplitude tests were then performed for specimens containing single and multiple welds.
Journal Article

Numerical Study of the Aerodynamic Characteristics of a Multi-Element Airfoil NACA 23012

2013-04-08
2013-01-1410
This work aims to numerically investigate the aerodynamic characteristics of a multi-element airfoil NACA 23012. The investigation was conducted through Computational Fluid Dynamics (CFD), using ANSYS FLUENT software. The Navier-Stokes equations were solved for turbulent, incompressible flow using k-epsilon model and SIMPLE algorithm. The study was carried out for both take-off / landing conditions and the results were compared to experimental data of the NACA 23012 from wind tunnel tests. The experimental and computational results for drag and lift coefficients match effectively up to pre-stall attack angles. The pressure coefficients, velocity distribution, and wall Y+ data were presented for different angles of attack (0 deg, 4 deg, and 8 deg). The CFD analysis could help acquire a closer and detailed understanding of airfoil performance, which is usually not easy through normal experimentation.
Technical Paper

General Motors DEXRON®-VI Global Service-Fill Specification

2006-10-16
2006-01-3242
During early 2005 General Motors released a newly developed ATF for the factory fill of all GM Powertrain stepped gear automatic transmissions. The new fluid provided significantly improved performance in terms of friction durability, viscosity stability, aeration and foam control and oxidation resistance. In addition, the fluid has the potential to enable improved fuel economy and extended drain intervals. Since the performance of the new fluid far exceeded that of the DEXRON®-III service fill fluids available at the time it became necessary to upgrade the DEXRON® service fill specification in order to ensure that similar fluids were available in the market for service and repair situations. This latest upgrade to the service fill specification is designated DEXRON®-VI [1].
Technical Paper

Evaluation of a Continuous Annealed Bake Hardenable Steel for Improved Dent Resistance

1989-02-01
890711
The potential of bake hardenable steel as a substitute for SAE 1008 steel to reduce gage and improve dent resistance is investigated in this report. Outer body panels in particular are susceptible to palm printing and other forms of denting. Conventional SAE 1008 steel and a developmental continuous annealed bake hardenable steel from Inland Steel Company are compared for dent performance properties. Bake hardenable (BH) steel is a medium strength (200-350 MPa) steel that receives an increase in yield strength during the heating of the paint bake cycle. An increase in yield strength would result in an increase in dent resistance. The increase in dent resistance is more quantitatively evaluated by comparing the BH steel with the current production material (SAE 1008) of a rear compartment lid outer.
Technical Paper

Diagnosis of Off-Brake Performance Issues with Low Range Pressure Distribution Sensors

2010-04-12
2010-01-0073
Brake caliper and corner behavior in the off-brake condition can lead, at times, to brake system performance issues such as residual drag (and related issues such as pulsation, judder, and loss of fuel economy), and caliper pryback during aggressive driving maneuvers. The dynamics in the brake corner can be strikingly complex, with numerous friction interfaces, rubber component and grease dynamics, deflections of multiple components, and significant dependence on usage conditions. Displacements of moving parts are usually small, and the residual forces in the caliper interfaces involved are also small in comparison with other forces acting on the same components, making direct observation very difficult. The present work attempts to illuminate off-brake behavior in two different conditions - residual drag and pryback - through the use of low-range pressure distribution sensors placed in between the caliper (pistons and fingers) and the brake pad pressure plates.
Technical Paper

Comparison of OEM Automatic Transmission Fluids in Industry Standard Tests

2007-10-29
2007-01-3987
As a result of raised awareness regarding the proliferation of individual OEM recommended ATFs, and discussion in various forums regarding the possibility of ‘universal’ service fill fluids, it was decided to study how divergent individual OEM requirements actually are by comparing the fluids performance in industry standard tests. A bench-mark study was carried out to compare the performance of various OEM automatic transmission fluids in selected industry standard tests. All of the fluids evaluated in the study are used by certain OEMs for both factory and service fill. The areas evaluated included friction durability, oxidation resistance, viscosity stability, aeration and foam control. The results of this study are discussed in this paper. Based on the results, one can conclude that each ATF is uniquely formulated to specific OEM requirements.
Technical Paper

Comparison Tests Between Major European and North American Automotive Wind Tunnels

1983-02-01
830301
The results of comparative aerodynamic force measurements on a full-scale notchback-type vehicle, performed between 6 European companies operating full-scale automotive wind tunnels, were published in the SAE Paper 800140. Correlation tests with the same vehicle have been extended to 2 further European and 3 North American wind tunnels. First the geometry, the design and the flow data of the different wind tunnels is compared. The facilities compared include wind tunnels with open-test-sections, closed-test-sections and one tunnel with slotted side walls. The comparison of results, especially for drag coefficients, show that the correlation between the differently designed wind tunnels is reasonable. Problems of blockage correction are briefly discussed. The comparison tests furthermore revealed that careful design of the wheel pads and blockage corrections for lift seem to be very influential in achieving reasonable lift correlations. Six-component measurements show similar problems.
Journal Article

CFD-Based Shape Optimization for Optimal Aerodynamic Design

2012-04-16
2012-01-0507
Increased energy costs make optimal aerodynamic design even more critical today as even small improvements in aerodynamic performance can result in significant savings in fuel costs. Energy conscious industries like transportation (aviation and ground based) are particularly affected. There have been a number of different optimization methods, some of which require geometrically parameterized models. For non-parameterized models (as it is the case often in reality where models and shapes are very complex). Shape optimization and adjoin solvers are some of the latest approaches. In our study we are focusing on generating best practices and investigating different strategies of employing the commercially available shape optimizer tool from ANSYS'CFD solver Fluent. The shape optimizer is based on a polynomial mesh-morphing algorithm. The simple case of a low speed, airfoil/flap combination is used as a case study with the objective being the lift to drag ratio.
Journal Article

An Investigation of CutCell Meshing Strategies for Accurate Aerodynamic Performance Prediction

2012-04-16
2012-01-0499
With advances in computing power and Computational Fluid Dynamics (CFD) algorithms, the complexity of CutCell based simulation models has significantly increased. In this study three dimensional numerical simulations were created for steady incompressible flow around airfoil shape. The NACA-0012 airfoil was used for this study. Boundary layer thickness, mesh expansion ratio, and mesh density variation parameters were investigated. Drag and lift coefficients were compared to experimental data. Use of the CutCell method results in a good agreement between CFD results and experimental data.
Technical Paper

Aerodynamic Test and Development of the Corvette C5 for Showroom Stock Racing

2002-12-02
2002-01-3333
This pager documents a one shift (10 hour) wind tunnel test program conducted on a Corvette C5 prepared for Sports Car Club of America (S.C.C.A.) World Challenge racing. The testing was conducted at the Canadian National Research Center in Ottawa, Canada. Specific areas of test included front fascia and under tray, rear air discharge, rear wing configuration and angle, B-pillar configuration, and ride height. Standard wind tunnel test procedures were followed. In total twenty-six separate configurations were evaluated. Data for front and rear lift, total drag, and lift/drag (L/D) ratio are provided for each test configuration. The cumulative effects of the aerodynamic changes evaluated in this program, calculated at 192 KPH (120 MPH), increased front down force by 318 N (72 Lb.), and rear down force by 770 N (173 Lb.). Lift/drag ratio was improved from -0.597 to -1.016. These changes increased total drag by 381 N (86 Lb.).
Technical Paper

Aerodynamic Shape Optimization for a 3-D Multi-Element Airfoil

2014-04-01
2014-01-0296
This paper discusses the uses of shape morphing/optimization in order to improve the lift to drag ratio for a typical 3D multi-element airfoil. A mesh morpher algorithm is used in conjunction with a direct search optimization algorithm in order to optimize the aerodynamics performance of a typical high-lift device. Navier-Stokes equations are solved for turbulent, steady-state, incompressible flow by using k-epsilon model and SIMPLE algorithm using the commercial code ANSYS Fluent. Detailed studies are done on take-off/landing flight conditions; the results show that the optimization is successful in improving the aerodynamic performance.
Technical Paper

Aerodynamic Drag and Fuel Economy in a Formula SAE Racing Style Vehicle

2001-08-20
2001-01-2554
Aerodynamic drag directly impacts the fuel economy attainable by a vehicle. In the Formula SAE competition (FSAE), fuel economy is a factor during the endurance phase. The focus of this paper is to study the effects of aerodynamic drag and how it impacts the fuel economy of a FSAE racing style vehicle. The Lawrence Technological University (LTU) 1999 and 2000 cars will be used in this study to evaluate various methods to reduce drag and improve fuel economy. Empirical methods will be used and the study will be limited to the effects of form and interference drag.
Technical Paper

Aerodynamic Development of a Successful NASCAR Winston Cup Race Car

1994-12-01
942521
This paper describes the methodology used to achieve optimum aerodynamic performance of the 1989 through 1994 Chevrolet Lumina Winston Cup race car, and demonstrates the continuous improvements successfully used to respond to rule changes and competition. The development will be documented from construction of a prototype race car, through one third scale model testing, and the detail development required to continually improve performance and meet changing body rules which stringently limit body modifications. Despite these limitations, track and wind tunnel testing of development vehicles contributed to driver's and manufacturer's championships in the first racing season. The continuous improvement process, which includes ongoing wind tunnel and track tests, has resulted in improvement or at least maintenance of drag coefficient along with lift coefficient reduction of up to 0.050 each year.
X